

Linear Line

Telescopic Line

Actuator Line

Actuator System Line

TO SUPPORT YOU, WE DESIGN AND PRODUCE

An industrialized process with various levels of customization

COLLABORATION

High-level technical consulting and cross-competence allow us to identify the needs of our clients and transform them into guidelines for continuous exchange, whileour strong specialization in the different industrial sectors becomes an factor in developing projects and innovative applications.

Rollon takes on the task of design and development of linear motion solutions, taking care of everything for our customers, so that they can concentrate on their core business. We offer everything from individual components to specifically designed, mechanically integrated systems: the quality of our applications is an expression of our technology and competence.

AERONAUTICS

DIVERSIFIED LINEAR SOLUTIONS FOR EVERY APPLICATION REQUIREMENT

Linear and telescopic rails

Linear actuators and automation systems

Actuator Line

Linear actuators with different rail configurations and transmissions, available with belt, screw, or rack and pinion drives for different needs in terms of precision and speed. Rails with bearings or ball recycle systems for different load capacities and critical environments.

Actuator System Line

Integrated actuators for industrial automation, used in applications in several industrial sectors: automated industrial machinery, precision assembly lines, packaging lines and high speed production lines. The Actuator Line evolves to satisfy the requests of our most discerning clients.

Compact Rail

Self-aligning linear guides with bearings and a C-profile made of cold-drawn carbon steel. They have induction hardened and ground raceways.

Linear Line

X-Rail

Linear bearings with bended C-profile. Available in zinc-plated steel, stainless steel or hardened with Rollon NOX treatment.

Easyslide

Smooth linear guides with balls and a C-profile made of cold-drawn carbon steel. They have induction hardened raceways.

Curviline

Customized guides for constant and variable radius. Available as stainless steel and hardened or unhardened steel version.

Linear Line

0-Rail

Modular linear guides with rollers. Versatile for the highest flexibility of configurations.

Prismatic Rail

Prismatic rails with bearings. They're available with cylindrical rollers or with V-shaped rollers configuration.

Speedy Rail

Self-supporting and self-aligning extruded aluminum linear guides. The slider is supported by steel bearings covered by plastic compound, available in cylindrical or V-shaped configuration.

Mono Rail

Recirculating balls linear guides. They have ground raceways and a ball contact angle of 45° in X-arrangement.

Technical features overview

	Reference		Section		Hardened	Rollon NOX hardening	Self-	Sli	der	Anticorrosion
Prod	duct Family	Product		rail	raceways	process *3	alignment	Balls	Rollers	
Compact Rail	The Bear of the	TLC KLC ULC			V		+++			****
ndii	Band -	TG/TMG			V	V	+++			****
X-Rail	6. 6. 0	TEX TES UEX UES					+++			Available in stainless steel
		TEN/TEP UEN/UEP	RELLEDY			V	+++			.
Easyslide		SN			V		++	000000		****
Ludyondo		SNK			V		+			****
Curviline	No.	CKR CVR CKRH CVRH CKRX CVRX			V		+			Available in stainless steel
0-Rail	***	FXRG		L		V	+++			6 6 ****
Prismatic Rail		Р		Æ	V		+++			
		SR35		OD CO	V		++			• •
Speedy Rail		SRC48			V		+			• •
		SR			√		+++			••
Mono Rail		MR			V		-			
mono Han		MMR			V		-			****

Reported data must be verified according to the application.

***C50

^{*1} The maximum value is defined by the application.

 $^{^{\}star 2}$ A longer stroke is available for jointed versions.

 $^{^{\}star 3}$ High dept nitride hardening treatment and oxidation.

^{*4} Value reffered to a single bearing, it's possibile to configure the numbers of bearings to obtain the desired load capacity.

^{****}For more information, please contact our technical department.

Size	per s	l capacity slider N]	Dynamic coefficient [N]	M	ax. mome capacity [Nm]	nt	Max. rail length	Max. speed*	Max. acceleration	Operating
	C _o rad	C _o ax	C 100	M _x	M _y	M _z	[mm]	[m/s]	[m/s²]	temperature
18-28-35 -43-63	15000	10000	36600	350	689	1830	4080*2	9	20	-20°C/+120°C
18-28-43	10800	7140	15200	110.7	224.3	754	4000*2	7	15	-20°C/+120°C
20-26-30-40-45	1740	935	***				4000	1.5	2	-20°C/+100°C TEX-UEX -20°C/+120°C TES-UES
26-30-40	3240	1150	3670				4000	1.5	2	-30°C/+150°C
22-28-35 -43-63	122000	85400	122000	1120.7	8682	12403	1970	0.8		-20°C/+170°C
43	10858	7600	10858	105	182	261	2000*2	1.5		-20°C/+70°C
16.5-23	2475	1459	***				3240	1.5	2	-20°C/+80°C
12	4000*4	1190*4	7600*4				4000	9	20	-20°C /+120°C
28-35-55	15000	15000	-	-	-	-	4100*2	7	20	-10°C/+80°C
35	400	400	-	-	-	-	6500*2	8	8	- 30° C / + 80° C
48	540	400	-	-	-	-	7500*2	8	8	- 30° C / + 80° C
60-90-120- 180-250	14482	14482		-	-	-	7500*2	15	10	- 30° C / + 80° C
15-20-25-30-35- 45-55	249	000	155000***	5800	6000	6000	4000*2	3.5	20	-10°C/+60°C
7-9-12-15	83	85	5065	171.7	45.7	45.7	1000*2	3	250	-20°C/+80°C

Telescopic Rail

Heavy duty telescopic rails with hardened raceways for extractions up to 150%. Available with different shapes according to load capacity and rigidity required.

Hegra Rail

Industrial telescopic rails for extractions up to 200%. Stainless steel and aluminum versions available.

Telescopic Line

Telerace

Telescopic guides with bearings, suitable for vertical strokes and variable stroke working cycles.

Light Rail

Rolled steel telescopic rails with light structure for extractions up to 100%.

Technical features overview

	Reference			Product name	Extraction	Size	Pr	ofile	Self alignment	Sli	der	
	Product Family	Product	Section				Туре	Hardened raceways		Balls	Rollers	Steel
	The state of the s	ASN		ASN22 ASN28 ASN35 ASN43 ASN63	50%	22 28 35 43 63	Cold Draw	•	+	•		
		DE		DE22 DE28 DE35 DE43 DE63 DE285 DE43S DE43S DE43S DE43S DE35D DE43D DE63D	100%	22 28 35 43 63 28 35 43 28 35 43 63 43	Cold Draw		++			
Telescopio Rail		DS	The state of the s	DSS28 DSS35 DSS43 DSS63 DSS43S DSS43S DSB28 DSB35 DSB43 DSD28 DSD35 DSD43 DSD63	100%	28 35 43 63 43 28 35 43 28 35 43 63	Cold Draw		++			
		DSC		DSC43	100%	43	Cold Draw	•	++	•		•
		DBN		DBN22 DBN28 DBN35 DBN43	100%	22 28 35 43	Cold Draw	•	++	-		•
		DMS		DMS63	100%	63	Cold Draw	•	++	•		-
		DSE		DSE28 DSE35 DSE43 DSE63	150	28 35 43 63	Cold Draw	•	++	•		•

Reported data must be verified according to the application.

standard

B stroke in both directions

stainless steel BM stroke in both directions with driving disc

 $^{^{\}star}$ The maximum value is defined by the application. For more information, please contact our technical department.

Mate	erial		roke ection	Snap	Locking closed position	Damping closed position	capacity	load per pair N]	Max. rail length [mm]	Max. stroke [mm]	Max. extension speed*	Rigidity (deflec- tion)	Operating tempera- ture
Х	А	В	ВМ				C _{Orad}	C _{0ax}			[m/s]		[°C]
							5934	4154	770	394	0.8		
							15736	11014	1170	601	0.8		
							26520	18564	1490	759	0.8	+++	-20°C/+170°C
							48596	34018	1970	1013	0.8		
							88494	61946	1970	1013	0.8		
		•					1348	546	770	788	0.8		
							2338	1074	1170	1202	0.8		
							3816	1586	1490	1518	0.8		-20°C/+170°C
		-					6182	2868	1970	2026	0.8		
		-					14396	6124	1970	2026	0.8		
						-	2100	758	1170	1186	0.8		
							3540	1574	1490	1510	0.8	+++	-20°C/+50°C
						-	5964	2522	1970	2066	0.8		
							2014	856	1170	1216	0.8		
							3460	1534	1490	1503	0.8		
							5784	2484	1970	2011	0.8		-20°C/+170°
							15512	6514	1970	1962	0.8		
							7524	3830	1970	1923	0.8		
							4480	-	1490	1518	0.8		
							7016	-	1730	1758	0.8		
							9816	-	1970	2026	0.8		-20°C/+80°C
							25664	-	1970	2026	0.8		
							10208	-	1970	2026	0.8		-20°C/+50°C
					•		4480	-	1490	1518	0.8		
					•		7016	-	1730	1758	0.8	++++	
					•		9816	-	1970	2026	0.8		
						-	5162	-	1490	1446	0.8		-20°C/+80°C
							9736	-	1730	1630	0.8		
		-					11660	-	1970	1916	0.8		
						-	38018	-	1970	1758	0.8		
							11058	4150	1970	2028	0.8	+++	-20°C/+80°C
							562	472	770	788	0.8		
		-					1244	1074	1170	1202	0.8		2000/ 4===
		•					1334	1120	1490	1518	0.8	+	-20°C/+170°
		•					2662	2558	1970	2026	0.8		
						•	39624	-	2210	2266	0.8	++++	-20°C/+80°C
							1702	-	1170	1803	0.8		
							3182	-	1490	2277	0.8		00501
							5012	-	1970	3039	0.8	++++	-20°C/+80°C
							11344	_	1970	3039	0.8		

Technical features overview

	Reference			Product name	Extraction	Size	Pro	file	Self alignment	Sli	der	
	Product Family	Product	Section				Туре	Hardened raceways		Balls	Rollers	Steel
		нтт		HTT030 HTT040 HTT050	60 % to 66 %	30 40 50	Machined		+	•		•
		HVC	the off	HVC045 HVC050 HVC058 HVC075	100 %	45 50 58 75	Bended sheetmetal & cold drawn		++	•		•
		H1C*1		H1C075	150%	75	Machined, cold drawn & bended sheetmetal		++	•		•
		H1T* ¹	off the	H1T060 H1T080 H1T100 H1T150	150 % to 200 %	60 80 100 150	Machined &		++	•		•
Hegra Rail		Н2Н		H2H080	150 % to 200 %	80	cold drawn		++	•		•
		LTH		LTH30 LTH45 LTH30S LTH45S	100 %	30 45 30 45	Cold drawn		++	•		•
		HGT		HGT060 HGT080 HGT100 HGT120 HGT150 HGT200 HGT240	100 %	60 80 100 120 150 200 250	Machined & cold drawn		++	•		•
		LTF	OID VIII	LTF44	100 %	44	Cold drawn		++	•		•
	\$2.00	HGS	(TEO G. III)	HGS060	100 %	60	Machined		++	•		•

Reported data must be verified according to the application.

In many cases, special designs or alternative surface coatings are possible. For more information, please contact our technical department.

- *1 The over extension corresponds to 150 % stroke (1=150 % extraction). For a 200 % stroke (2=200 % extraction) please contact our technical department.
- *2 Different temperature ranges from -30 °C to +250 °C, This must be verified according to the application.
- $^{\star 3}$ The load capacity for aluminum is 40 % and for stainless steel 60 % of the stated values, if available in this material variant.
- *4 Different stainless steels, such as the «electropolishing» option, are available. For more information, please contact our technical department.
- *5 The availability of locking systems depends on the system length and varies per product group. For more information, please contact our technical department.
- *6 The operating temperature is maximum +50°C if damping is used. For more information, please contact our technical department.
- *7 The maximum value is defined by the application. For more information, please contact our technical department.

- feasible
- ▲ only to length 1000
 - standard

Materi	al	Str dire			Snap		Lo	cking	J ^{*5}	Dam- ping	capacity	. load v per pair N]	Max. rail length [mm]	Max. stroke [mm]	Max. extension speed* ⁷	Rigidity (deflec- tion)	Operating tempera- ture*2*6
X*4	Α	В	ВМ	EG	E0	ЕВ	VG	VO	VB	DG	C _{0rad} *3	C _{0ax}			[m/s]		[°C]
				•	•	•				•	1200		1000	660			
•	•	•		•	•	•				•	2550	on request	1000	660	0.8	+++	-20°C/+170°C
				•	•	•				•	2900		1200	720			
											1200		1200	1200			
							•	•	•		1500		1500	1500			
•		•	•	•	•	•	•	•	•	•	2100	on request	1500	1500	0.8	+	-20°C/+170°C
			•				•	•	•		3300		2000	2000			
		•		•	•	•				•	1350	-	1500	2250	0.5	+	-20°C/+170°C
				•	•	•					2600	-	1500	2250			
_				•	•	•					3200	-	1500	2250	0.5		0000/ 17000
•	•	•								•	5500	-	2000	3000	0.5	++	-20°C/+170°C
											7500	-	2000	3000			
•	•			•	•	•				•	on request	-	2000	3000	0.5	++	-20°C/+170°C
											1470		1200	1215			
											3346		1500	1522			
										•	1498	on request	1200	1217	0.5	++	-20°C/+170°C
										•	3084		1500	1522			
•	•	•	•	• •	•	•	•	•	•	•	5500 9350 11000 11800 13900 17500 20000	on request	1500 2000 2000 2000 2000 2000 2300 2000	1500 2000 2000 2000 2000 2000 2300 2000	0.5	+++	-20°C/+170°C
		•									1296	-	1010	1010	0.3	+	-20°C/+170°C
	•	•		•	•	•					1400	-	1000	1000	0.5	+++	-20°C/+170°C

steel X stainless steel A aluminum B stroke in both directions
BM stroke in both directions
with driving disc

EG snap on closed position

EO snap on opened position
EB snap on both positions

VG locking closed position
VO locking opened position
VB locking both positions

DG damping closed position

Technical features overview

	Reference			Product name	Extraction	Size	Pro	ofile	Self alignment	Sli	der	
	Product Family	Product	Section				Туре	Rollon NOX hardening*1		Balls	Rollers	Steel
		TLRP		TLR18P TLR28P TLR43P	100%	18 28 43	Cold Draw	•	+++		•	-
	San Carried	TLQP		TLQ18P TLQ28P TLQ43P	80% A 120%	18 28 43	Cold Draw	-	+		•	-
Telerace	The same of the sa	TLNP	đ	TLN30P TLN40P	100%	30 40	Rolled Sheetmetal	•	+		•	
IGIGIAGG		TQNP		TQN30P TQN40P	80% A 120%	30 40	Rolled Sheetmetal	•	+		•	•
		TLAX		TLAX26 TLAX40	100%	26 40	Rolled Sheetmetal		+		•	
	The state of the s	TQAX		TQAX26	80% A 120%	26 40	Rolled Sheetmetal		+		•	

Reported data must be verified according to the application.

standard

steel stainless steel aluminum B stroke in both directions
BM stroke in both directions
with driving disc

	Reference			Product name	Extraction	Size	Pro	ofile	Self alignment	Sli	der	
	Product Family	Product	Section				Туре	Hardened raceways		Balls	Rollers	Steel
		LRS		LRS 37	70%	37	Roll forming		++	•		-
Light Ra	uil Committee of the co	LFS		LFS46	100%	46	Roll forming		++	•		-
		LRS		LRS56 LRS71 LRS76	100%	56 71 76	Roll forming		++	-		•

Reported data must be verified according to the application.

standard

steel stainless steel aluminum B stroke in both directions BM stroke in both directions with driving disc

 $^{^{\}star 1}$ High dept nitride hardening treatment and oxidation.

 $[\]star^2$ The maximum value is defined by the application. For more information, please contact our technical department.

^{*} The maximum value is defined by the application. For more information, please contact our technical department.

Mate	rial	Stro direc		Suitable for variable stroke cycles	Suitable for vertical stroke	Damping closed position	capacity	. load v per pair N]	Max. rail length [mm]	Max. stroke [mm]	Max. extension speed*2	Rigidity (deflection)	Operating temperature [°C]
Х	Α	В	BM				C _{Orad}	C _{0ax}			[m/s]		
							1303	-	770	770			
				•		-	3264	-	1490	1500	1.0	++++	-20 °C/+110 °C
							7672	-	1970	1980			
							881	442	770	770			
				•	•	•	2014	808	1490	1490	1.0	+++	-20 °C/+110 °C
							5064	2084	1970	1970			
							2578	-	1490	1500	1.0	++++	-20 °C/+80 °C
							5094	-	1970	1980			
							1362	532	1490	1490	1.0	+++	-20 °C/+80 °C
				-	-	-	2142	1044	1970	1970	1.0	****	-20 6/+00 6
_				_		_	1330	-	1200	1200	1.0		00.00/.00.00
•						•	2422	-	1600	1600	1.0	++++	-20 °C/+80 °C
				_	_		1008	402	1200	1200	1.0		-20 °C/+80 °C
•				•	•	•	2170	1112	1600	1600	1.0	+++	-20 10/+00 10

Mater	ial		oke ction	Snap closed position	Locking	Damping closed position	Max. capacity [N		Max. rail length [mm]	Max. stroke [mm]	Max. extension speed*	Rigidity (deflec- tion)	Operating tempera- ture
Х	Α	В	BM				C _{Orad}	C _{0ax}			[m/s]		[°C]
				•		-	780	-	700	541	0.5	+	-20°C - +80°C
						-	400	-	600	610	0.5	+	+10 °C/+40 °C
				-		•	1290 2120 3250	-	1100 1100 1500	1100 1100 1504	0.5	+	-20°C - +80°C

Plus System

High performance linear actuators with steel re-enforced driving belt transmission. They have a high level of protection.

Clean Room System

Clean Room certified belt driven linear actuators.

Actuator Line

Smart System

Qualitative and cost effective belt driven linear actuators.

Eco System

Simple and protected belt driven linear actuators.

Uniline System

Belt driven actuators with radial ball bearing sliders.

Modline

Versatile belt driven linear actuators. They've recirculating ball guides or prismatic roller bearings.

Actuator Line

Precision System

High precision ball screw driven actuators.

Tecline

Rack and pinion driven linear actuators. They've recirculating ball guides or prismatic roller bearings.

Speedy Rail A

Self-supporting and self-aligning extruded aluminum linear guides. They can de driven by belt or rack and pinion.

Technical features overview /

	Reference		Linear mot	ion system		Driving		Anticorrection	Drotootion
P	roduct Family	Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	Protection
	So)	ELM						• •	Protected
Plus System	O	ROBOT						•	Protected
	P	SC			haaad Opaad			•	Semi-protected
Clean Room System	To	ONE						•	Protected with suction
	0	E-SMART			Onnananano				
Smart System	10	R-SMART							
	1011	S-SMART			bacad Opera				Semi-protected
Eco System		ECO							Semi-protected
Uniline System	To local	A/C/E/ED/H							Semi-protected
	19	MCR MCH			<u> </u>			•	Semi-protected
Modline	O	TCR TCS						•	
	P	ZCR ZCH			haaad O baaad			•	

Reported data must be verified according to the application.

* Longer stroke is available for jointed version

Size -		c. load capa per carriage [N]			static mor er carriage [Nm]		Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)
3126 -	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s ²]	[mm]	[mm]
50-65-80-110	4980	129400	129400	1392	11646	11646	5	50	± 0.05	6130*
100-130- 160-220	9545	258800	258800	22257	28986	28986	5	50	± 0.05	6100*
100-130-160	5810	153600	153600	13555	31104	31104	5	50	± 0.05	2500
50-65-80-110	4980	104800	104800	1126	10532	10532	5	50	± 0.05	6000*
30-50-80-100	4980	189200	189200	2680	19204	19204	4	50	± 0.05	6145*
120-160-220	9960	283800	283800	24123	36894	36894	4	50	± 0.05	6050*
50-65-80	2523	55400	55400	700	4044	4044	4	50	± 0.05	2000
60-80-100	4565	55400	55400	700	5485	5485	5	50	± 0.05	6000*
40-55-75	19360	11000	17400	800,4	24917	18788	7	15	± 0.05	5700*
65-80-105	3984	55400	55400	700	5983	5983	5	50	± 0.1	10100*
140-170 200-220-230 280- 360	9960	266400	266400	42624	61272	61272	5	50	± 0.1	11480
60-90-100 170-220	7470	189200	189200	13665	38691	38691	4	25	± 0.1	2500

Technical features overview /

	Reference	Linear motion system		Driving			Anticorrosion	Protection		
Pr	oduct Family	Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion		
		TH				<i>m</i> [] <i>m</i>			Semi-protected	
Precision		TT				<i>m</i> _ <i>m</i>			Semi-protected	
System		TV				<i>m</i> []mn			Semi-protected	
		TVS				<i>m</i> []mn		•	Semi-protected	
Tecline		PAR PAS						•		
		SAB			Oggggggggg					
Speedy Rail A		ZSY			Lond Open					
		SAR								

Reported data must be verified according to the application. * Longer stroke is available for jointed version

	Size .		c. load capa per carriage [N]		Max. static moment per carriage [Nm]			Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)	
	0120	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s ²]	[mm]	[mm]	
	70-90-110-145	32600	153600	153600	6682	5053	5053	2		± 0.005	1500	
	100-155- 225-310	30500	230500	274500	30195	26625	22365	2,5		± 0.005	3000	
	60-80-110	11538	85000	85000	1080	2316	2316	2,5		± 0.01	3000	
	170-220	66300	258800	258800	19410	47360	47360	1	5	± 0.02	3500	
	118-140-170- 200-220-230- 280-360	10989	386400	386400	65688	150310	150310	4	10	± 0.05	10800*	
	60-120- 180-250	4980	5431	5431	558	597	644	15	10	± 0.2	7150	
	180	4980	2300	2600	188	806	713	8	8	± 0.2	6640	
	120-180-250	1905	7240	7240	744	1521	1521	3	10	± 0.15	7150*	

Seventh Axis

Increase a robot's range of motion. Available in 11 different sizes, Rollon Seventh Axis is easy to integrate and can move any type of robot weighing up to 1500 Kg.

ceiling mounting.

Technical Features /

Reference		Linear guides		Drive		Anticorrosion	Protection				o:	Number
Family	Product	Rollers	Balls	Rack	Belt	option available	Sealing Strip	Simple	Partial	Total	Size	of profiles
	SEV120-1S							√			120x65	1
	SEV160-1S		,		Onnanana			V			160x90	1
	SEV220-1S		(mana)		OnnananaO			V			220x100	1
	SEV80-2				Onnananano	• •	V				80x80	2
Seventh Axis	SEV110-2					• •	V				110x110	2
	SEV280-1							V			170x280	1
	SEV170-2							V	V	V	170x120	2
	SEV170P-2							V	V	V	170x120	2
	SEV280-2			£ 0 }				$\sqrt{}$	$\sqrt{}$	√	280x170	2
	SEV280P-2							V	V	V	280x170	2
	SEV360-2							V	V	V	360x200	2

The data shown must be verified on the basis of the application.

*1 The total repeatability of the system depends on the gearbox. If the gearbox is ordered with the axis, our Technical Department can provide the total precision value.

Maximum speed [m/s]	Maximum acceleration [m/s²]	Repeatability [mm]	Maximum stroke [mm]	Robot examples*1			
				Brand	Model	Payload [Kg]	Weight [Kg]
2	4	± 0.05*1	6000	DENSO	VP-6242	2.5	15
				UNIVERSAL ROBOTS ABB	UK3 IRB 1100 ; IRB 120	3 3-4	11 21-25
2	4	± 0.05*1	6000	DOOSAN	M0609	6	17
				EPSON KASSOW ROBOTS	Prosix C3 KR810; KR1205	3 3-10	27 23.5-25
				KAWASAKI	RS03N; MC004N	3-4	20-25
				KUKA NACHI	KR 3 R540; LBR iiwa 7 R800; LBR iiwa 7 R820	3-14 4-7	22-29 26-30
				OMRON	Nachi MZO4; Nachi MZO7 TM5-700; TM5-900	4-7	21.8-22.6
				STÄUBLI	TX2-40	2	29
				UNIVERSAL ROBOTS YASKAWA	UR5 MH3F	5 3	21 27
2	4	± 0.05*1	5750	DOOSAN	M0617; M1013; M1509	6-15	24-32
				FANUC KASSOW ROBOTS	CR-4ia; CR-7ia; CRX-10ia; CR-14ia/L; LR Mate 200id; LR Mate 200id/4S; LR Mate 200id/14L KR1018	4-14 18	17-53 34
				KUKA	KR 6 R700-2; KR 6 R900-2; KR 10 R1100-2	6-10	53-55
				NACHI	Nachi MZ03EL	10	47
				STÄUBLI UNIVERSAL ROBOTS	TX2-60 UR10; UR10e; UR16e	4.5 10-16	51 31.5-33.5
				YASKAWA	HC10; GP7; GP8	7-10	32-47
2	4	± 0.05	5750	KASSOW ROBOTS	KR1410; KR1805	5-10	35-38
				KAWASAKI KUKA	RS003N; RS005N; RS005L; RS007N; RS007L Agilus Serie KR3; KR6; KR10	3-7 3-10	20-37 26-57
				MITSUBISHI	RV-2FR; RV-2FRL; RV-4FR; RV-4FRL; RV-7FRL; RV-7FRL	3-7	19-130
				NACHI	MZ07-01; MZ07L-01; MZ07P-01; MZ07LP-01;	7	30-32
				STÄUBLI	TX2-40; TX2-60; TX2-60L	2-4.5	29-53
				UNIVERSAL ROBOTS YASKAWA	UR3/3e; UR5/5e; UR10/10e; UR16e GP7; GP8	3-16 7-8	11-34 32-34
2	4	± 0.05	5750	ABB	IRB 1300; IRB 1300; IRB 140	7-11	74.5-78.5
				DENSO MITSUBISHI	VP-6083 RV-13F; RV-20F	6 13-20	82 120-137
				STÄUBLI	TX2-90	7	111
				YASKAWA	SIA20D	20	120
2	4	± 0.05	∞	COMAU FANUC	Racer 7-1.0; Racer-7-1.4; SIX-6-1.4 ARC Mate 100iC/12; M-10iA/10M; M-10iA/12; M-10iD 12	6-7 10-12	160-180 130-145
				KAWASAKI	RS010N; RS006L	6-10	150
				KUKA MITSUBISHI	KR6 – KR10 CYBERTECH nano; KR6 – KR8 CYBERTECH ARC nano RV13FR(-L); RV20FR	6-10 13-20	145-180 120-130
				NACHI	NB04; NV06;	10	160-170
				STÄUBLI YASKAWA	TP80; TX2-90; TX2-90L; TX2-90XL MH12/-F; GP12	7-14 12	111-119 130-150
				ABB	IRB 1600; IRB 1660ID; IRB 2600-12/-20; IRB 2600ID-8/-15;	4-20	250-284
2	4	± 0.05	∞	FANUC	M-20iA; M-20iA/20M; ARC Mate 120C; M-20iB/25; M-20iB/25C; M-20iA/35M	20-25	210-250
				KAWASAKI KUKA	RS020N; RS010L KR CYBERTECH / KR CYBERTECH arc	10-20 8-22	230 250-270
				NACHI	MC10L; MC20; MR20-02; MR20L-01; NB04L; NV06L	10-20	220-280
				STÄUBLI YASKAWA	RX160; RX160HD; RX160L; GP25; GP25-12; HP20F/-RD 2	14-20 12-25	248-250 250-268
2	4	± 0.05	∞	ABB	IRB 2400; IRB 4600; IRB 6620LX;	10-150	380-610
				COMAU	NS-12-1.85; NS-16-1.65; NJ-16-3.1; NJ-40-2.5; NJ-60-2.2	12-60	333-680
				FANUC KAWASAKI	M-710 all types RS030N; RS050N; RS080N; RS15X	12-70 30-80	410-570 555
				NACHI	MC35-01; MC50-01; MC70-01	35-70	640
2	2	± 0.05	∞	ABB FANUC	IRB460 M-710 all types	110 12-70	925 410-570
_		_ 0.00		KUKA	KR 30 and KR 60 - all types	16-60	600-700
2		± 0.05	∞	ABB COMAU	IRB460, IRB6620 NJ130 2.6	110-150 130	900-925 1050
	2			FANUC	R2000 100FH, 125L, 165F, 165FH, 165R	100-165	1090-1360
				KUKA	KR 120, 150, 180	120-180	677-1093
2		0.05		STAUBLI FANUC	TX200L M900ib/360; R2000ic/210L; R2000ic/270F	80 210-360	1000 1320-1540
2	2	± 0.05	∞	KUKA	KR 210, 240, 270, 300	210-300	1068-1154

Actuator System Line

Multi-Axes Pick and Place

Multi-axes system for automated feeding of production and assembly lines.

Ready to use solution with high reliability due to 40 years experience.

Both rack and pinion and belt driving systems allow to move independent groups of carriages.

Z axis with pneumatic counterbalance allows energy saving and smaller motors.

LOAD CAPACITY ACCORDING TO DYNAMICS

Reported data must be verified according to the application. For more information, please contact our technical department.

Multi Gantry

Gantry solutions designed for each specific application in different industrial sectors.

Wide range of stiff aluminum beams allow to have a long span or to use less columns for the structure.

Self-alignment technologies allow cost effective mounting for parallel axes in very long systems.

Belt, ball screw and rack and pinion driving systems allow to achieve the right precision and dynamics for any application.

Recirculating balls guides or prismatic roller guides allow to match different needs in terms of dirty environments, precision, dynamics and smoothness.

Dedicated omega technology for Z axis allows space saving and higher dynamics.

Integrated lubrication system allows long life and low maintenance.

LOAD CAPACITY ACCORDING TO DYNAMICS

Reported data must be verified according to the application. For more information, please contact our technical department.

Lower load - Higher dynamics

Higher load - Lower dynamics

Actuator System Line

Transfer Press

Dedicated solution for transfer press.

LOAD CAPACITY ACCORDING TO DYNAMICS

Reported data must be verified according to the application. For more information, please contact our technical department.

Lower load - Higher dynamics

Telescopic Actuator - Horizontal

Double stroke telescopic actuator for metal sheets handling.

LOAD CAPACITY ACCORDING TO DYNAMICS

Reported data must be verified according to the application. For more information, please contact our technical department.

Lower load - Higher dynamics

Actuator System Line

Telescopic Actuator - Wall Mounted

Double stroke telescopic actuator with vertical axis for pick and place in limited spaces.

LOAD CAPACITY ACCORDING TO DYNAMICS

Reported data must be verified according to the application. For more information, please contact our technical department.

Lower load - Higher dynamics

Telescopic Actuator - Z

Vertical telescopic actuator for pick and place in limited ceiling height.

LOAD CAPACITY ACCORDING TO DYNAMICS

Reported data must be verified according to the application. For more information, please contact our technical department.

Lower load - Higher dynamics

EUROPE

ROLLON S.p.A. - ITALY (Headquarters)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1

www.rollon.com - infocom@rollon.com

ROLLON S.p.A. - RUSSIA (Rep. Office)

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rollon.com-info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consult the other ranges of products

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024

www.rollon.uk.com - info@rollon.uk.com

ROLLON - SOUTH AMERICA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rollon.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. – INDIA

39-42, Electronic City, Phase-I, Hosur Road, Bangalore-560100 www.rollonindia.in - info@rollonindia.in

Distributor

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON - JAPAN

〒252-0131 神奈川県相模原市緑区西橋本1-21-4 橋本屋ビル

電話番号: 042-703-4101 www.rollon.jp - info@rollon.jp

All addresses of our global sales partners can also be found at www.rollon.com