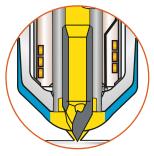
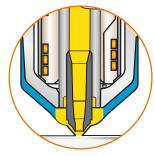


2 Offene Heißkanalsysteme

2.1 Einzel-Heißkanaldüsen	Seite
Produktübersicht	2.1.10
Produktdetails	2.1.20
2.2 System-Heißkanaldüsen	
Produktübersicht	2.2.10
Übersicht im Gesamtaufbau	2.2.20
Produktdetails	2.2.30
2.3 Vorkammerbuchsen	
Produktübersicht	2.3.10
Übersicht im Gesamtaufbau	2.3.20
Produktdetails	2.3.30
2.4 Heißkanalverteiler/Rasant-Sy	vsteme
Produktübersicht	2.4.10
Übersicht im Gesamtaufbau	2.4.20
Produktdetails	2.4.30


Heißkanaldüsen

Mit seiner großen Vielfalt an Schmelzekanal-Durchmessern, Düsenlängen und Anschnittgeometrien bietet das GÜNTHER Heißkanaldüsen-Programm Lösungen für alle Anforderungen moderner Spritzgusstechnik.



ANSCHNITTGEOMETRIE

Unterschiedliche Anschnittarten erfüllen komplexe Anforderungen, wie die Einhaltung besonderer Nestabstände, die Direktanspritzung bei unterschiedlichsten Artikelgewichten und die Umsetzung verschiedener Düsenlängen oder Schmelzekanal-Durchmesser.

Offene Düse mit Spitze

Offene Düse mit geradem Durchlass

OFFENE HEISSKANALDÜSEN

Die unterschiedlichen Düsentypen als Einzeldüse oder als Düse für Mehrfachsysteme ermöglichen die Umsetzung einer sehr großen Bandbreite von Anwendungen. Aufgrund der modularen Bauweise sind einzelne Bauteile wie Heizung, Fühler, Schmelzekanal und Düsenspitze austauschbar. Dies bietet Vorteile bei Reparatur- und Wartungsarbeiten (Zeitersparnis, geringere Reparaturkosten, kurze Stillstandzeiten).

GÜNTHER Heißkanaldüsen überzeugen mit einer ausgezeichneten thermischen Trennung durch den zweigeteilten Schaft. Dieser sorgt für eine hervorragende Isolierung im vorderen Schaftbereich und damit für einen äußerst geringen Wärmeverlust zwischen Heißkanaldüse und Kavität im Werkzeug. Daher eignen sich die GÜNTHER Heißkanaldüsen besonders für die Verarbeitung von thermisch empfindlichen Materialien, technischen Kunststoffen und hochtemperaturbeständigen Polymeren. Bei gefüllten Materialien bieten verschleißgeschützte Wärmeleitspitzen den bestmöglichen Schutz gegen mechanischen und chemischen Angriff, z.B. bei Glasfasern mit Wärmestabilisatoren. 3D-CAD-Modelle der Heißkanaldüsen sind in der CADHOC® Bibliothek verfügbar.

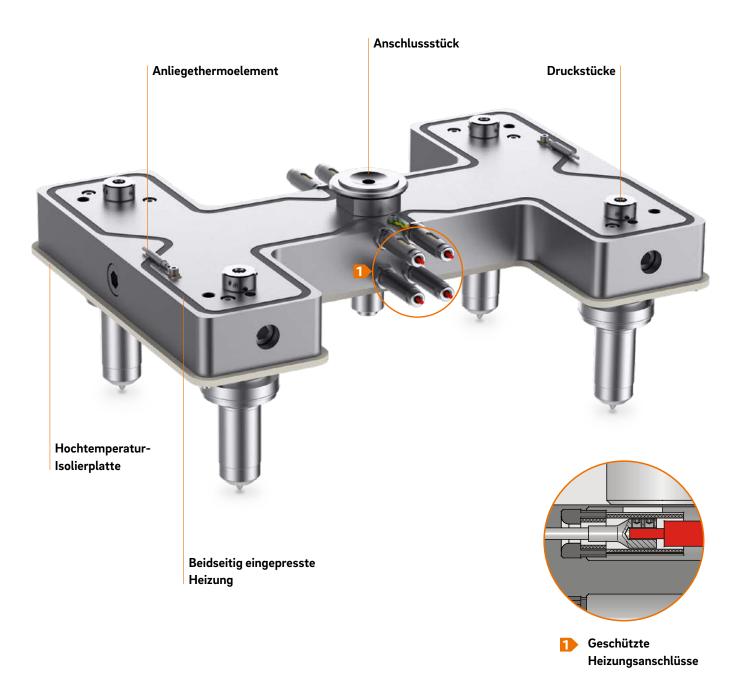
IHRE VORTEILE AUF EINEN BLICK

- Homogene Temperaturführung
- Optimale thermische Trennung
- C Einfacher Einbau und Sicherheit gegen Leckagen
- Hervorragende Isolierung im vorderen Düsenbereich
- Sehr gute Abrissqualität
- Montagefreundliche steckbare Strom- und Thermofühleranschlüsse
- Anwendungen bis 450 °C Prozesstemperatur
- BlueFlow®: hermetisch dicht, Energieeinsparung bis 50 % möglich

DICKSCHICHT-HEIZELEMENT BLUEFLOW®

Die BlueFlow® Heißkanaldüse setzt neue Maßstäbe für die Qualität und Gestaltung von Formteilen aus thermisch sensiblen Kunststoffen. Sie verfügt über einen besonders schlanken Düsenaufbau mit einem geringen Außendurchmesser bei gleichem Schmelzekanal-Durchmesser. Die Heizleistung in jedem Abschnitt der Düse ist exakt an den Bedarf angepasst. Dadurch wird ein homogenes Temperaturprofil über die komplette Düse erzielt.

Der Kunststoff im Schmelzekanal wird thermisch kaum belastet. Die physikalischen Eigenschaften des Endprodukts sind auch mit thermisch sensiblen Kunststoffen und in sehr kleinen Kunststoffartikeln sicher erreichbar.



Technische Änderungen vorbehalten

Verteilersysteme

Je nach gewünschter Anwendung stehen unterschiedliche Verteilervarianten zur Verfügung – von teil- oder vollbalanciert bis hin zu kundenspezifischen Speziallösungen. Durch eine variable Positionierung der Heißkanaldüsen ist das Stichmaß frei wählbar, was eine individuelle Gestaltung der Werkzeuge ermöglicht.

HOMOGENE TEMPERATURFÜHRUNG DANK EINGEPRESSTER HEIZUNGEN

Alle schmelzeführenden Bauteile sind außenbeheizt, wodurch ein optimaler Schmelzefluss bei geringstmöglichem Druckverlust gewährleistet wird. Die beidseitig eingepresste Heizung garantiert eine optimale Wärmeübertragung auf den Verteilerblock. Das Ergebnis ist eine homogene Temperaturverteilung.

GESCHÜTZTE STROMANSCHLÜSSE – HOHE WARTUNGSFREUNDLICHKEIT

Mittels Stahl- und Keramikhülsen werden die Stromanschlüsse vor Beschädigung geschützt. Die mechanische Reinigung der Verteilerkanäle ist einfach und schnell möglich. Eine Reinigung im Wirbelbettbad oder Ofen ist ebenfalls möglich. Zu Individual- und Standardverteilern sind die Modelldaten in der Bibliothek des CADHOC® System-Designers konfigurierbar und daher schnell verfügbar.

DER CADHOC® SYSTEM-DESIGNER – ERSTKLASSIGE SOFTWARE ZU IHRER UNTERSTÜTZUNG

Mit dem CADHOC® System-Designer erfüllen wir Ihren Wunsch nach schneller Bereitstellung von Produktdaten zu Einzelkomponenten bis hin zu kompletten Heißkanalsystemen inklusive des Negativvolumens:

Der CADHOC® System-Designer ermöglicht Ihnen unter anderem:

- eine optimierte Auslegung der Düsengrößen
- eine umfassende Auswahl an Kunststofftypen
- eine direkte Konfiguration ohne Angabe der Verarbeitungsparameter
- eine anwendungsbezogene Konfiguration unter Angabe der Verarbeitungsparameter

Zu jedem Heißkanalsystem stehen 3D-CAD-Modelle zum Download in verschiedenen Datenformaten bereit. Nach Eingabe Ihrer Konfigurationsparameter erhalten Sie eine E-Mail-Benachrichtigung mit einem Link zu den Produktdaten des konfigurierten Heißkanalsystems.

DIE RASANT-SYSTEME VON GÜNTHER

Die Rasant-Systeme und BlueFlow® Düsen sind in der Bibliothek des CADHOC® System-Designers hinterlegt und schnell verfügbar. Damit konfigurieren Sie als registrierter Nutzer Ihr Rasant-Heißkanalsystem innerhalb kürzester Zeit. Schnell, einfach und sicher können Sie alle relevanten 3D-Daten inklusive Negativvolumen und Preisinformationen sofort herunterladen.

Informationen zu unseren Rasant-Systemen finden Sie ab Seite 2.4.140.

IHRE VORTEILE AUF EINEN BLICK

- Homogene Temperaturverteilung
- Variable Düsenpositionen
- Stromanschlüsse vor Beschädigungen von außen geschützt
- Einfache und schnelle Reinigung
- Modelldaten in der Online-Bibliothek CADHOC[®] hinterlegt

2.1 Einzel-Heißkanaldüsen

EINZEL-HEISSK	ANALDÜSEN	Seite
	5SEF/5DEF Offene Einzeldüse – Dickschicht-Heizelement BlueFlow® 4,8 mm Schmelzekanal-Durchmesser	20
	8SET/8DET, 12SET/12DET Offene Einzeldüse – mit konventionellem Heizelement 7,5 mm/12,0 mm Schmelzekanal-Durchmesser	30, 40
SYSTEMDÜSEN	MIT BEHEIZTER AUFNAHME ALS EINZELDÜSE	
	4SHF/4DHF + AHJ4, 5SHF/5DHF + AHJ5, 6SHF/6DHF + AHJ6 Offene Einzeldüse – Dickschicht-Heizelement BlueFlow® – mit beheizter Aufnahme 3,8 mm/4,8 mm/6,0 mm Schmelzekanal-Durchmesser	50, 60, 70
	5SHT/5DHT + AHJ5, 6SHT/6DHT + AHJ6 Offene Einzeldüse – mit konventionellem Heizelement – mit beheizter Aufnahme 4,8 mm/6,0 mm Schmelzekanal-Durchmesser	80,90
	8SHT/8DHT + AHJ8, 10SHT/10DHT + AHJ10, 12SHT/12DHT + AHJ12 Offene Einzeldüse – mit konventionellem Heizelement – mit beheizter Aufnahme 7,5 mm/10,0 mm/12,0 mm Schmelzekanal-Durchmesser	100, 110, 120

Heißkanaldüse Typ 5SEF/5DEF

Offene Einzeldüse mit Dickschicht-Heizelement (BlueFlow®)

TECHNISCHE DATEN

5SEF/5DEF

Schmelzekanal-Ød 4,8 mm

Düsenstück SEF – offen mit Spitze

DEF – offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

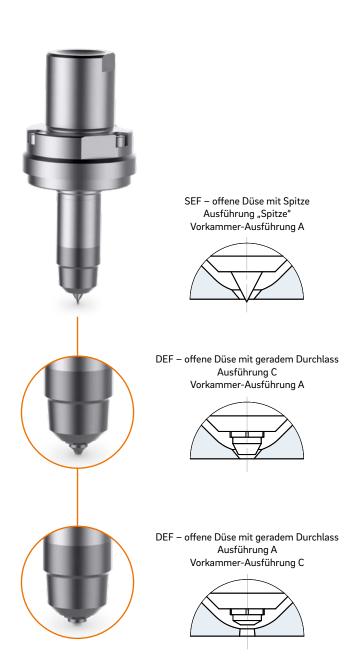
50 60 80

Aufnahme Gerade (G)/Radius (R)/

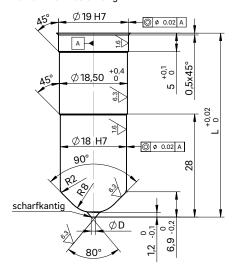
Winkel (W)

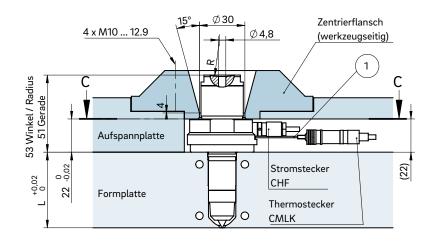
Für weitere Düsenlängen kontaktieren Sie uns!

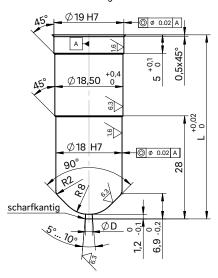
* Volt Alternating Current (Wechselstrom)

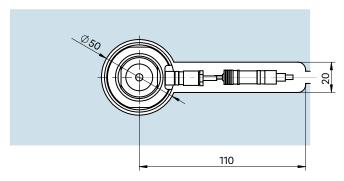

■ verfügbar

HINWEISE


Stromstecker CHF und Thermostecker CMLK sind separat zu bestellen.


BlueFlow® Heißkanaldüse Typ SEF/DEF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!


Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

 $\ensuremath{ \textcircled{1}}$ Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Heißkanaldüse Typ 8SET/8DET

Offene Einzeldüse mit konventionellem Heizelement

TECHNISCHE DATEN

8SET/8DET

Schmelzekanal-Ød 7,5 mm

Düsenstück SET - offen mit Spitze

DET - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

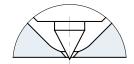
50	60	80	100	120	150	200	250

Aufnahme Gerade (G)/Radius (R)/

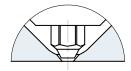
Winkel (W)

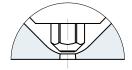
Für weitere Düsenlängen kontaktieren Sie uns!

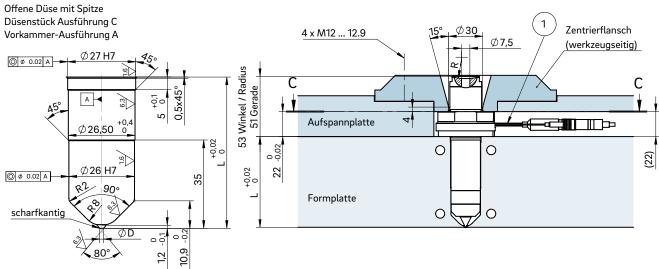
* Volt Alternating Current (Wechselstrom)


■ verfügbar 🗆 auf Anfrage

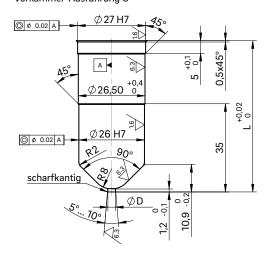
HINWEISE

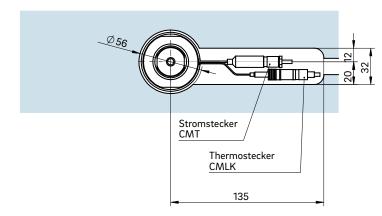

Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.


SET – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A


DET - offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A

DET – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C





Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

 $^{ ext{(1)}}$ Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Heißkanaldüse Typ 12SET/12DET

Offene Einzeldüse mit konventionellem Heizelement

TECHNISCHE DATEN

12SET/12DET

Schmelzekanal-Ød 12,0 mm

Düsenstück SET – offen mit Spitze

DET - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

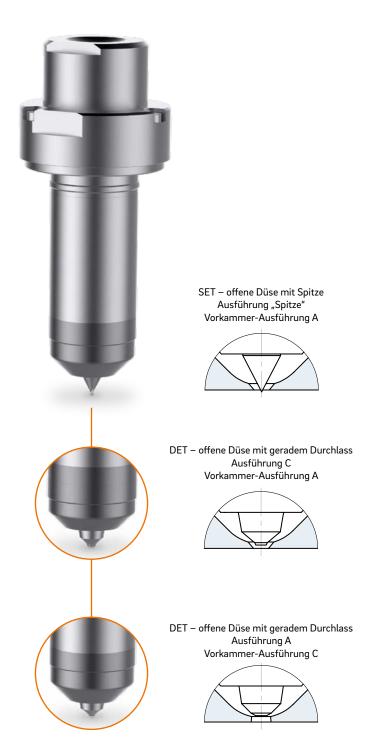
Nennlänge der Düse (L) in mm

60	80	100	120	150	200	250

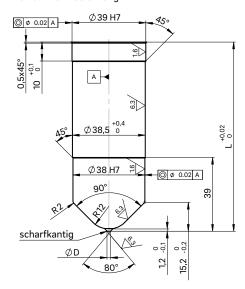
Aufnahme Gerade (G)/Radius (R)/

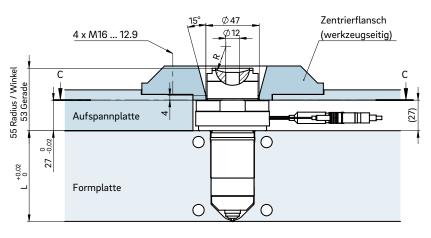
Winkel (W)

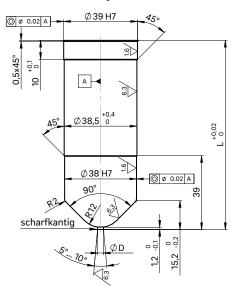
Für weitere Düsenlängen kontaktieren Sie uns!

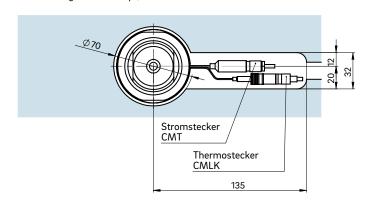

* Volt Alternating Current (Wechselstrom)

■ verfügbar 🗆 auf Anfrage


HINWEISE


Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.


Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

① Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Heißkanaldüse Typ 4SHF/4DHF mit AHJ4

Offene Einzeldüse mit Dickschicht-Heizelement (BlueFlow®) und beheizter Aufnahme AHJ4

TECHNISCHE DATEN

4SHF/4DHF

Schmelzekanal-Ød 3,8 mm

Düsenstück SHF – offen mit Spitze

DHF – offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50	60	80	100	120	150	180

AHJ4

Schmelzekanal-Ød 4,0 mm

Betriebsspannung 230 V_{AC}*

Aufnahme Gerade (G)/Radius (R)/

Winkel (W)

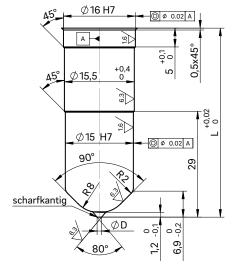
Für weitere Düsenlängen kontaktieren Sie uns!

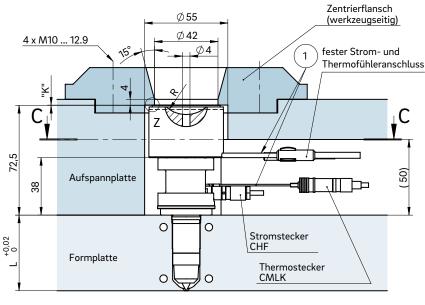
* Volt Alternating Current (Wechselstrom)

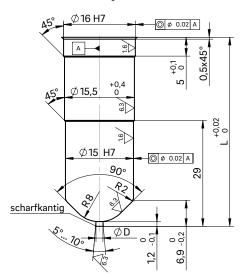

■ verfügbar □ auf Anfrage

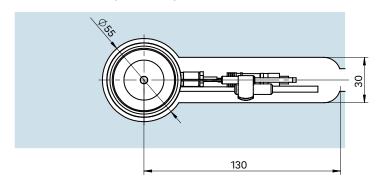
HINWEISE

Stromstecker CHF und Thermostecker CMLK sind separat zu bestellen.


BlueFlow® Heißkanaldüse Typ SHF/DHF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!

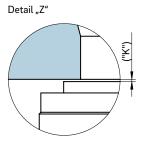



Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C



① Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen des Zentrierflansches sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe der Düse (mit Aufnahme) und der Höhe des Aufbaus im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

ΔT (°C)	100	150	200	250	300	350
K (mm)	0,06	0,08	0,09	0,11	0,13	0,16

Heißkanaldüse Typ 5SHF/5DHF mit AHJ5

Offene Einzeldüse mit Dickschicht-Heizelement (BlueFlow®) und beheizter Aufnahme AHJ5

TECHNISCHE DATEN

5SHF/5DHF

Schmelzekanal-Ød 4,8 mm

Düsenstück SHF – offen mit Spitze

DHF – offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50	60	80	100	120	150	180

AHJ5

Schmelzekanal-Ød 5,0 mm

Betriebsspannung 230 V_{AC}*

Aufnahme Gerade (G)/Radius (R)/

Winkel (W)

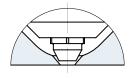
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

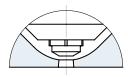
HINWEISE

Stromstecker CHF und Thermostecker CMLK sind separat zu bestellen.

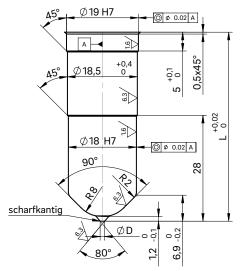
BlueFlow® Heißkanaldüse Typ SHF/DHF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!

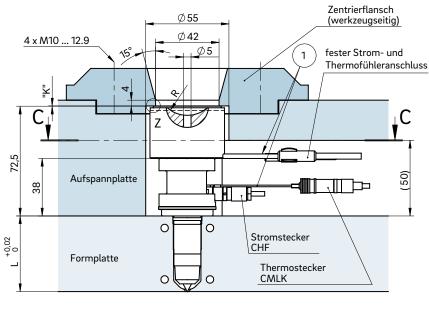


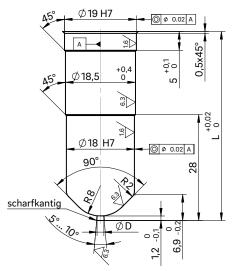
SHF – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

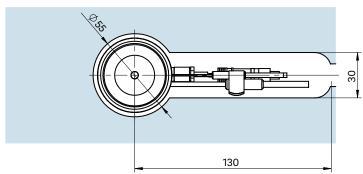


DHF – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A



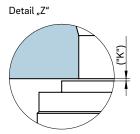

DHF – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C


Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C



① Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen des Zentrierflansches sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe der Düse (mit Aufnahme) und der Höhe des Aufbaus im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

ΔT (°C)	100	150	200	250	300	350
K (mm)	0,06	0,08	0,09	0,11	0,13	0,16

Heißkanaldüse Typ 6SHF/6DHF mit AHJ6

Offene Einzeldüse mit Dickschicht-Heizelement (BlueFlow®) und beheizter Aufnahme AHJ6

TECHNISCHE DATEN

6SHF/6DHF

Schmelzekanal-Ød 6,0 mm

Düsenstück SHF – offen mit Spitze

DHF - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}^{*}

Nennlänge der Düse (L) in mm

AHJ6

Schmelzekanal-Ød 6,0 mm

Betriebsspannung 230 V_{AC}*

Aufnahme Gerade (G)/Radius (R)/

Winkel (W)

Für weitere Düsenlängen kontaktieren Sie uns!

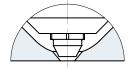
* Volt Alternating Current (Wechselstrom)

■ verfügbar □ auf Anfrage

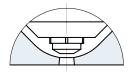
HINWEISE

Stromstecker CHF und Thermostecker CMLK sind separat zu bestellen.

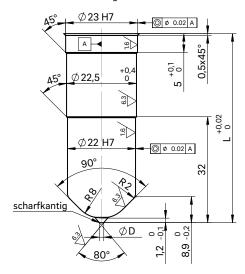
BlueFlow® Heißkanaldüse Typ SHF/DHF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!

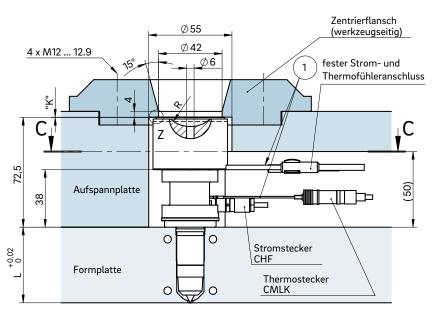


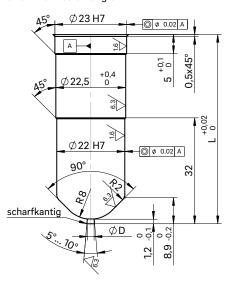
SHF – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

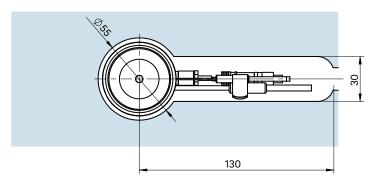


DHF – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A



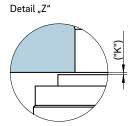

DHF – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C


Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C



① Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen des Zentrierflansches sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe der Düse (mit Aufnahme) und der Höhe des Aufbaus im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

ΔT (°C)	100	150	200	250	300	350	
K (mm)	0,06	0,08	0,09	0,11	0,13	0,16	

Heißkanaldüse Typ 5SHT/5DHT mit AHJ5

Offene Einzeldüse mit konventionellem Heizelement und beheizter Aufnahme AHJ5

TECHNISCHE DATEN

5SHT/5DHT

Schmelzekanal-Ød 4,8 mm

Düsenstück SHT – offen mit Spitze

DHT - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50 60 80 100

AHJ5

Schmelzekanal-Ød 5,0 mm

Betriebsspannung 230 V_{AC}*

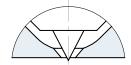
Aufnahme Gerade (G)/Radius (R)/

Winkel (W)

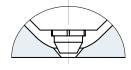
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

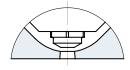
■ verfügbar


HINWEISE

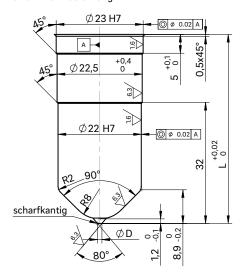
Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

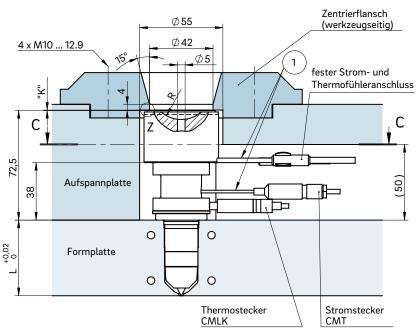


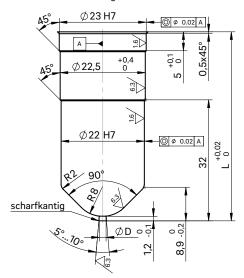
SHT – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A



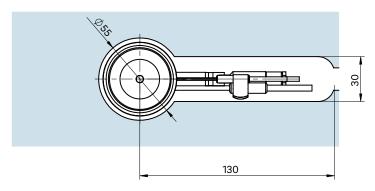
DHT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A



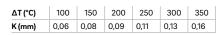

DHT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C

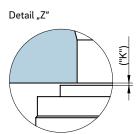


Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C




Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

 $^{ ext{1}}$ Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen des Zentrierflansches sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe der Düse (mit Aufnahme) und der Höhe des Aufbaus im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

Heißkanaldüse Typ 6SHT/6DHT mit AHJ6

Offene Einzeldüse mit konventionellem Heizelement und beheizter Aufnahme AHJ6

TECHNISCHE DATEN

6SHT/6DHT

Schmelzekanal-Ød 6,0 mm

Düsenstück SHT – offen mit Spitze

DHT - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50	60	80	100	120	150	200	250

AHJ6

Schmelzekanal-Ød 6,0 mm

Betriebsspannung 230 V_{AC}*

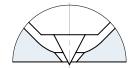
Aufnahme Gerade (G)/Radius (R)/

Winkel (W)

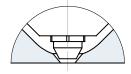
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

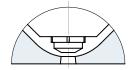
■ verfügbar □ auf Anfrage


HINWEISE

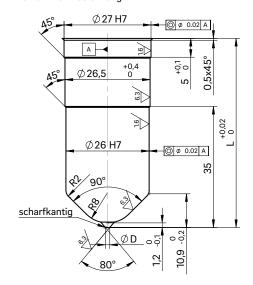
Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

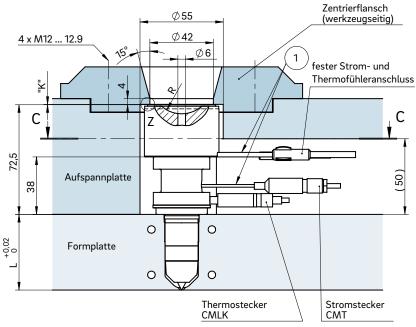


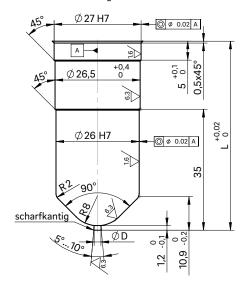
SHT – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A



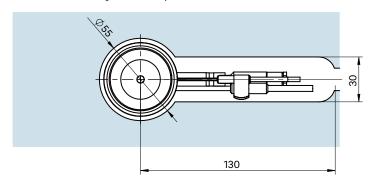
DHT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A



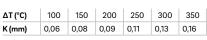

DHT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C

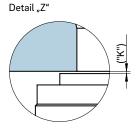


Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C




Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

① Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen des Zentrierflansches sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe der Düse (mit Aufnahme) und der Höhe des Aufbaus im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

Heißkanaldüse Typ 8SHT/8DHT mit AHJ8

Offene Einzeldüse mit konventionellem Heizelement und beheizter Aufnahme AHJ8

TECHNISCHE DATEN

8SHT/8DHT

Schmelzekanal-Ød 7,5 mm

Düsenstück SHT – offen mit Spitze

DHT - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50	60	80	100	120	150	200	250

AHJ8

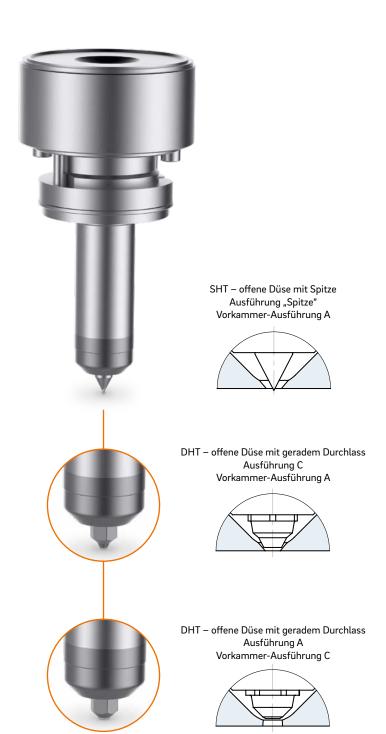
Schmelzekanal-Ød 6,0 mm

Betriebsspannung 230 V_{AC}*

Aufnahme Gerade (G)/Radius (R)/

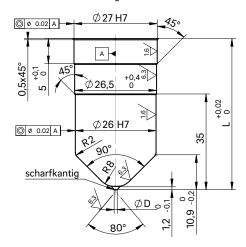
Winkel (W)

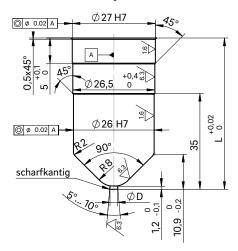
Für weitere Düsenlängen kontaktieren Sie uns!

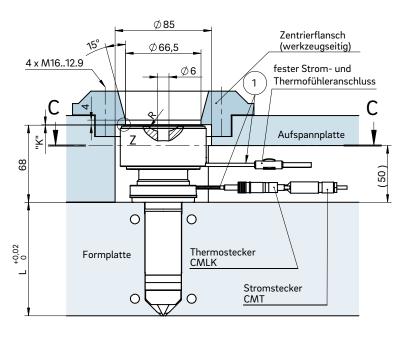

* Volt Alternating Current (Wechselstrom)

■ verfügbar □ auf Anfrage

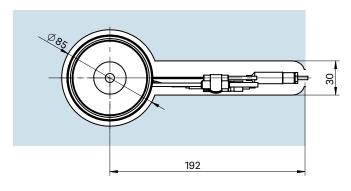
HINWEISE


Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

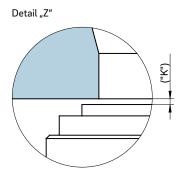




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C


Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

① Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen des Zentrierflansches sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe der Düse (mit Aufnahme) und der Höhe des Aufbaus im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

ΔT (°C)	100	150	200	250	300	350
K (mm)	0,04	0,08	0,12	0,16	0,20	0,25

Heißkanaldüse Typ 10SHT/10DHT mit AHJ10

Offene Einzeldüse mit konventionellem Heizelement und beheizter Aufnahme AHJ10

TECHNISCHE DATEN

10SHT/10DHT

Schmelzekanal-Ød 10,0 mm

Düsenstück SHT – offen mit Spitze

DHT - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

60	80	100	120	150	200	250

AHJ10

Schmelzekanal-Ød 8,0 mm

Betriebsspannung 230 V_{AC}*

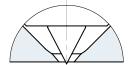
Aufnahme Gerade (G)/Radius (R)/

Winkel (W)

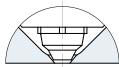
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

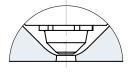
■ verfügbar □ auf Anfrage


HINWEISE

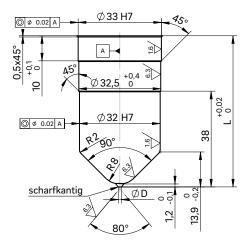
Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.



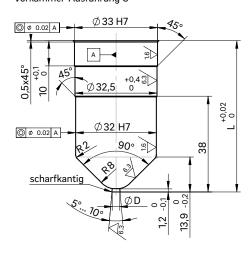
SHT – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

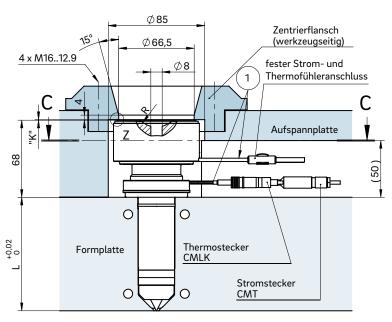


DHT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A

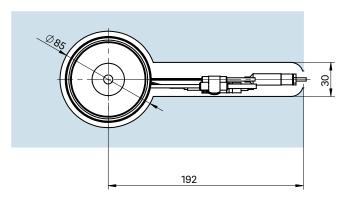


DHT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C

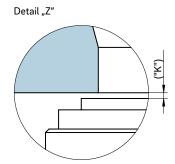




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C


Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

 $\ensuremath{\textcircled{1}}$ Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen des Zentrierflansches sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe der Düse (mit Aufnahme) und der Höhe des Aufbaus im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

ΔT (°C)	100	150	200	250	300	350
K (mm)	0.04	0.08	0.12	0.16	0.20	0.25

Heißkanaldüse Typ 12SHT/12DHT mit AHJ12

Offene Einzeldüse mit konventionellem Heizelement und beheizter Aufnahme AHJ12

TECHNISCHE DATEN

12SHT/12DHT

Schmelzekanal-Ød 12,0 mm

Düsenstück SHT – offen mit Spitze

DHT - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

60	80	100	120	150	200	250

AHJ12

Schmelzekanal-Ød 10,0 mm

Betriebsspannung 230 V_{AC}*

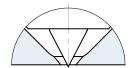
Aufnahme Gerade (G)/Radius (R)/

Winkel (W)

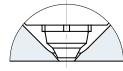
Für weitere Düsenlängen kontaktieren Sie uns!

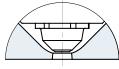
* Volt Alternating Current (Wechselstrom)

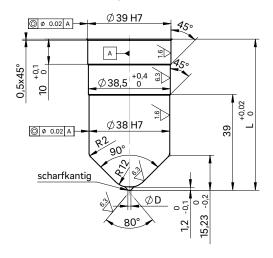
■ verfügbar □ auf Anfrage


HINWEISE

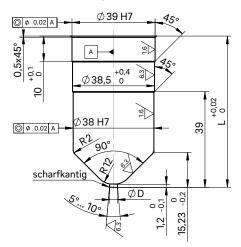
Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

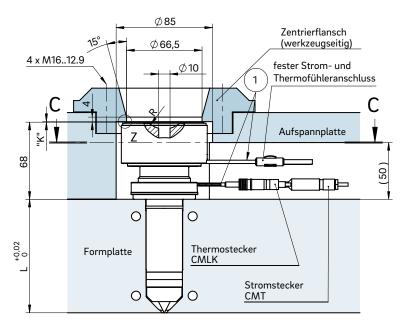



SHT – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

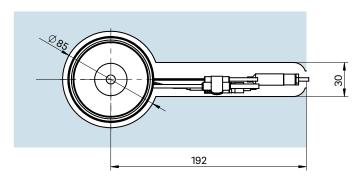


DHT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C

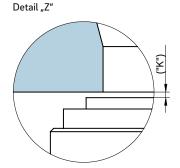




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



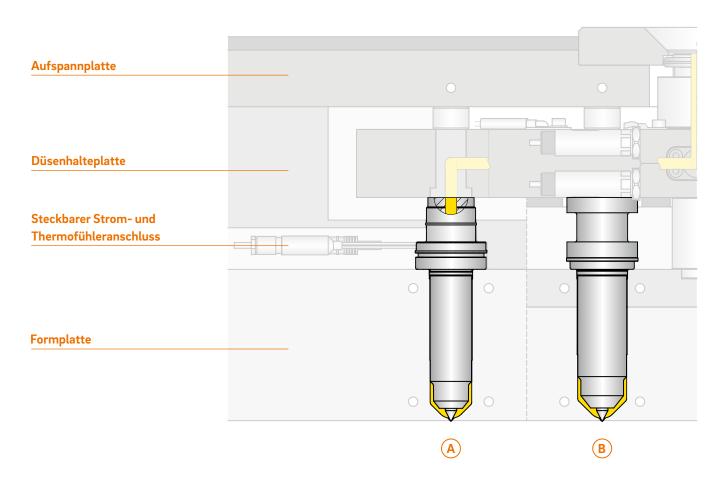
Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C


Schnitt C-C: Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

① Strom- und Thermofühleranschluss in diesem Bereich 1 × biegbar; Mindestradius R8

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen des Zentrierflansches sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe der Düse (mit Aufnahme) und der Höhe des Aufbaus im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

ΔT (°C)	100	150	200	250	300	350
K (mm)	0,04	0,08	0,12	0,16	0,20	0,25


2.2 System-Heißkanaldüsen

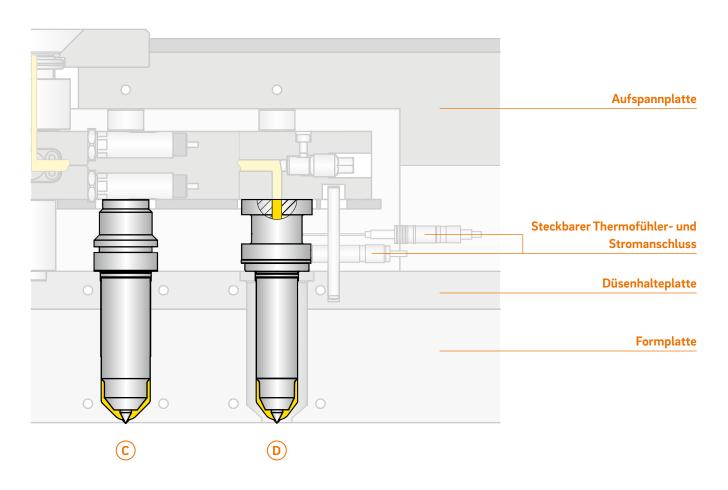
SYSTEM-HEIS	SSKANALDÜSEN – OFFENES SYSTEM	Seite
900	4SHF/4DHF, 5SHF/5DHF, 6SHF/6DHF	30, 40, 50
	Offene Systemdüse, verschraubt mit dem Verteiler,	
	Dickschicht-Heizelement BlueFlow®	
W	3,8 mm/4,8 mm/6,0 mm Schmelzekanal-Durchmesser	
060	5SHT/5DHT, 6SHT/6DHT	60, 70
4	Offene Systemdüse, verschraubt mit dem Verteiler,	
	mit konventionellem Heizelement	
Ψ	4,8 mm/6,0 mm Schmelzekanal-Durchmesser	
500	8SHT/8DHT, 10SHT/10DHT, 12SHT/12DHT	80, 90, 100
	Offene Systemdüse, verschraubt mit dem Verteiler,	
III	mit konventionellem Heizelement	
Ψ	7,5 mm/10,0 mm/12,0 mm Schmelzekanal-Durchmesser	
FIR	4SMT/4DMT, 5SMT/5DMT, 6SMT/6DMT	110, 120, 130
₹	Offene Systemdüse, nicht mit dem Verteiler verschraubt,	
	mit konventionellem Heizelement	
1	3,8 mm/4,8 mm/6,0 mm Schmelzekanal-Durchmesser	
	3SMF-K/3DMF-K, 5SMF-K/5DMF-K, 8SMF-K/8DMF-K	140, 150, 160
	Offene Systemdüse, nicht mit dem Verteiler verschraubt,	
H	Dickschicht-Heizelement BlueFlow®	
¥	2,8 mm/4,8 mm/7,5 mm Schmelzekanal-Durchmesser	
	5SMT-K/5DMT-K	170
#	Offene Systemdüse, nicht mit dem Verteiler verschraubt,	
	mit konventionellem Heizelement	
*	4,8 mm Schmelzekanal-Durchmesser	
ffi	3STF/3DTF	180
8	Offene Systemdüse, verschraubt von der Trennebene,	
1	Dickschicht-Heizelement BlueFlow®	
Ŵ	2,8 mm Schmelzekanal-Durchmesser	
	4STT/4DTT, 5STT/5DTT, 6STT/6DTT	190, 200, 210
81	Offene Systemdüse, verschraubt von der Trennebene,	
Ш	mit konventionellem Heizelement	
Ψ	3,8 mm/4,8 mm/6,0 mm Schmelzekanal-Durchmesser	

Übersicht im Gesamtaufbau

System-Heißkanaldüsen

Α

Düse Typ STT


- Mit Schaft
- Verschraubt von Trennebene

В

Düse Typ SHT

- Mit Schaft
- Verschraubt mit dem Verteiler

2.2.20

C

Düse Typ SMT

- Mit Schaft
- Für geringe Abstände
- Nicht mit dem Verteiler verschraubt

D

BlueFlow® Düse Typ SHF

- Mit Schaft
- Dickschicht-Heizelement
- Verschraubt mit dem Verteiler

Heißkanaldüse Typ 4SHF/4DHF

Offene Systemdüse mit Dickschicht-Heizelement (BlueFlow®), verschraubt mit dem Verteiler

TECHNISCHE DATEN

4SHF/4DHF

Schmelzekanal-Ød 3,8 mm

Düsenstück SHF – offen mit Spitze

DHF - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

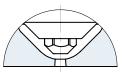
Nennlänge der Düse (L) in mm

50	60	80	100	120	150	180

Für weitere Düsenlängen kontaktieren Sie uns!

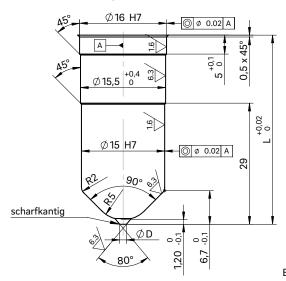
* Volt Alternating Current (Wechselstrom)

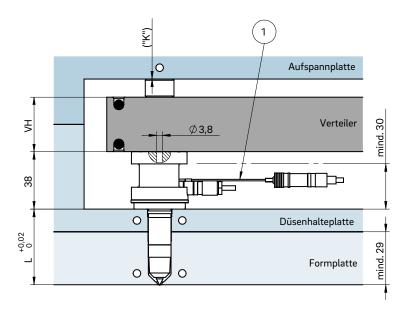
lacktriange verfügbar \Box auf Anfrage

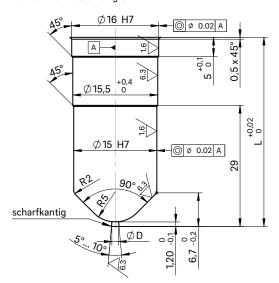

HINWEISE

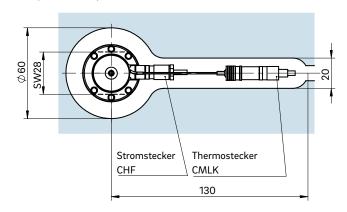
Stromstecker CHF und Thermostecker CMLK sind separat zu bestellen.

BlueFlow® Heißkanaldüse Typ SHF/DHF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!






Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

 \bigcirc Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 5SHF/5DHF

Offene Systemdüse mit Dickschicht-Heizelement (BlueFlow®), verschraubt mit dem Verteiler

TECHNISCHE DATEN

5SHF/5DHF

Schmelzekanal-Ød 4,8 mm

Düsenstück SHF – offen mit Spitze

DHF - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50	60	80	100	120	150	180

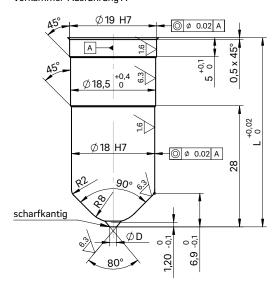
Für weitere Düsenlängen kontaktieren Sie uns!

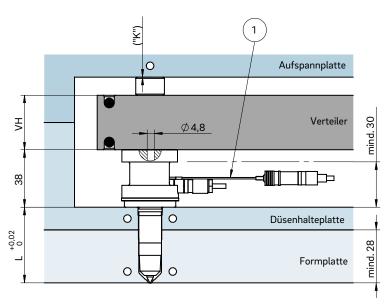

* Volt Alternating Current (Wechselstrom)

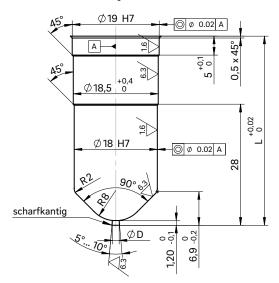
lacktriange verfügbar \Box auf Anfrage

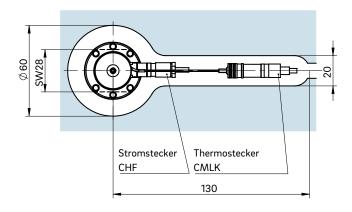
HINWEISE

Stromstecker CHF und Thermostecker CMLK sind separat zu bestellen.


BlueFlow® Heißkanaldüse Typ SHF/DHF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

① Thermofühleranschluss in diesem Bereich nur $1 \times$ biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 6SHF/6DHF

Offene Systemdüse mit Dickschicht-Heizelement (BlueFlow®), verschraubt mit dem Verteiler

TECHNISCHE DATEN

6SHF/6DHF

Schmelzekanal-Ød 6,0 mm

Düsenstück SHF – offen mit Spitze

DHF – offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50 60 80 100 120 150 **•** • • • • • □

Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

lacksquare verfügbar \Box auf Anfrage

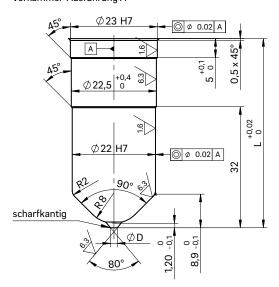
HINWEISE

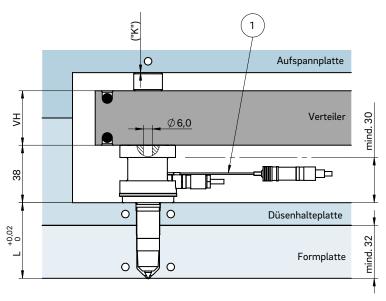
Stromstecker CHF und Thermostecker CMLK sind separat zu bestellen.

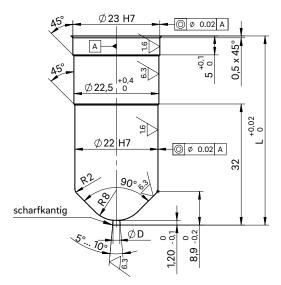
BlueFlow® Heißkanaldüse Typ SHF/DHF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!

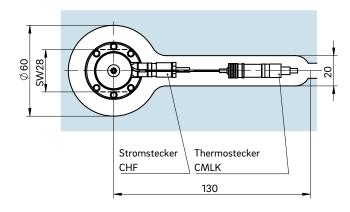
SHF – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

DHF – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A




DHF – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C


Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

 ${f \odot}$ Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 5SHT/5DHT

Offene Systemdüse mit konventionellem Heizelement, verschraubt mit dem Verteiler

TECHNISCHE DATEN

5SHT/5DHT

Schmelzekanal-Ød 4,8 mm

Düsenstück SHT - offen mit Spitze

DHT - offen mit geradem

Durchlass

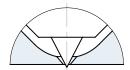
Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50 60 80 100

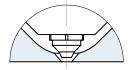
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

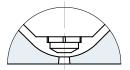

■ verfügbar

HINWEISE

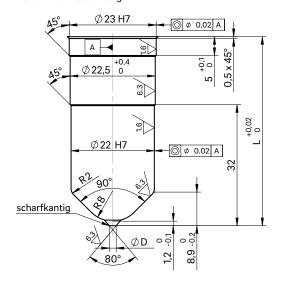
Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

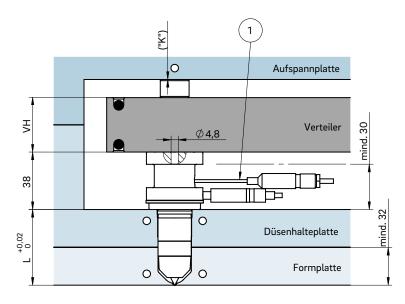


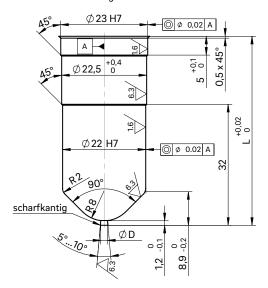
SHT - offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

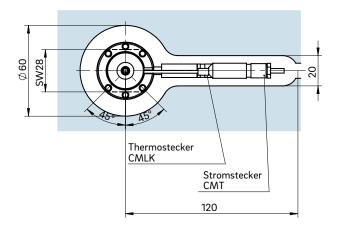


DHT - offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A


DHT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

 \bigcirc Stromanschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0.046	0.097	0.150	0.203	0.258	0.311

Heißkanaldüse Typ 6SHT/6DHT

Offene Systemdüse mit konventionellem Heizelement, verschraubt mit dem Verteiler

TECHNISCHE DATEN

6SHT/6DHT

Schmelzekanal-Ød 6,0 mm

Düsenstück SHT – offen mit Spitze

DHT - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50	60	80	100	120	150	200	250

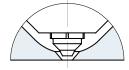
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

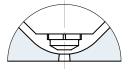
lacksquare verfügbar \Box auf Anfrage

HINWEISE

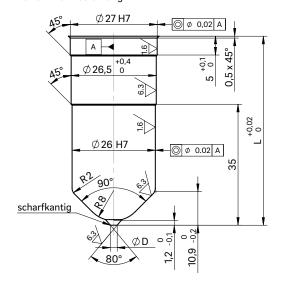
Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

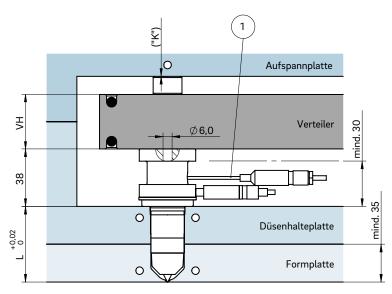


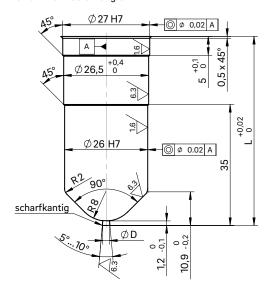
SHT – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

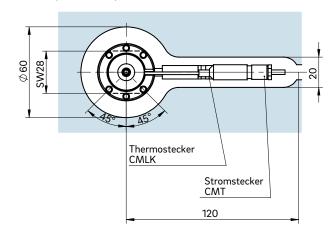


DHT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A


DHT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

① Stromanschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 8SHT/8DHT

Offene Systemdüse mit konventionellem Heizelement, verschraubt mit dem Verteiler

TECHNISCHE DATEN

8SHT/8DHT

Schmelzekanal-Ød 7,5 mm

Düsenstück SHT - offen mit Spitze

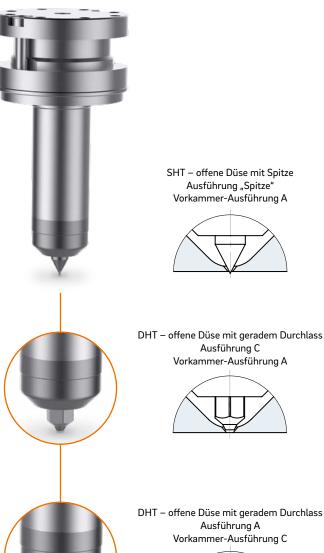
DHT - offen mit geradem

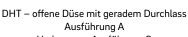
Durchlass

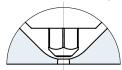
Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50	60	80	100	120	150	200	250

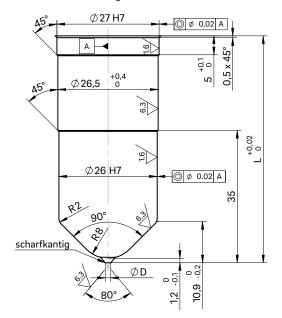

Für weitere Düsenlängen kontaktieren Sie uns!

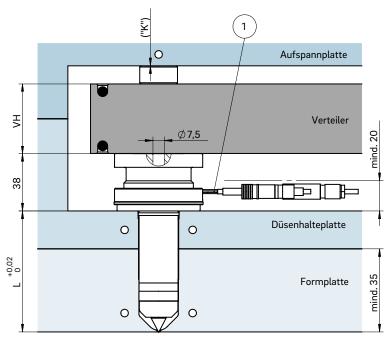

* Volt Alternating Current (Wechselstrom)

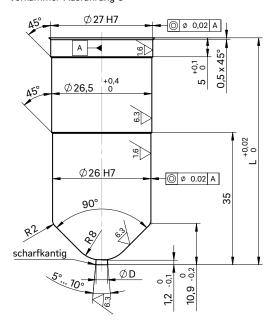

lacksquare verfügbar \Box auf Anfrage

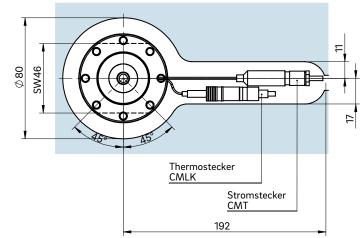
HINWEISE

Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.






Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

① Strom- und Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8

SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 10SHT/10DHT

Offene Systemdüse mit konventionellem Heizelement, verschraubt mit dem Verteiler

TECHNISCHE DATEN

10SHT/10DHT

Schmelzekanal-Ød 10,0 mm

Düsenstück SHT – offen mit Spitze

DHT - offen mit geradem

Durchlass

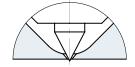
Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

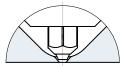
60	80	100	120	150	200	250

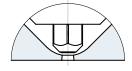
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

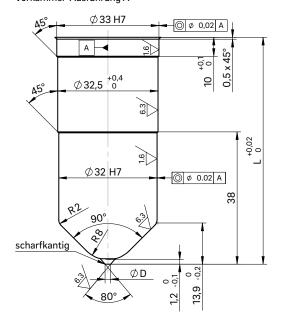

lacksquare verfügbar \Box auf Anfrage

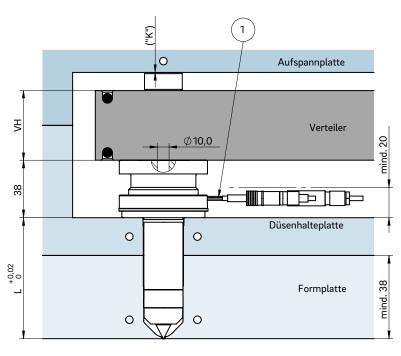
HINWEISE

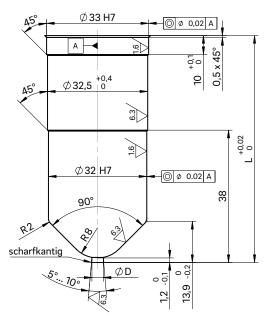

Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

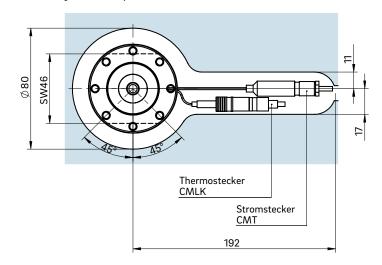

SHT – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

DHT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A


DHT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

 Strom- und Thermofühleranschluss in diesem Bereich nur 1 x biegbar; Mindestradius R8
 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 12SHT/12DHT

Offene Systemdüse mit konventionellem Heizelement, verschraubt mit dem Verteiler

TECHNISCHE DATEN

12SHT/12DHT

Schmelzekanal-Ød 12,0 mm

Düsenstück SHT – offen mit Spitze

DHT - offen mit geradem

Durchlass

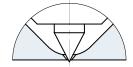
Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

60	80	100	120	150	200	250

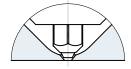
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

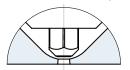

lacksquare verfügbar \Box auf Anfrage

HINWEISE

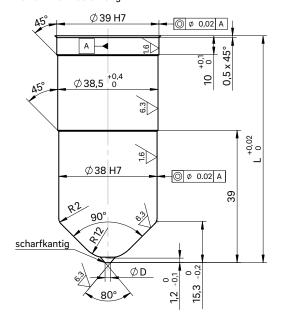
Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

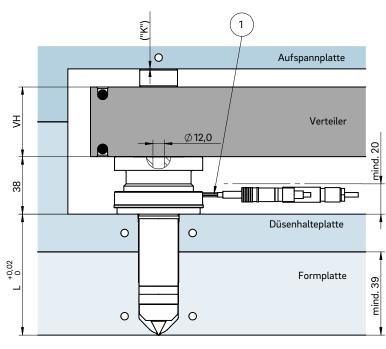


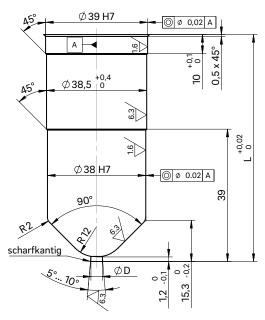
SHT – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A



DHT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A


DHT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

① Strom- und Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die

Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0.046	0.097	0.150	0.203	0.258	0.311

Heißkanaldüse Typ 4SMT/4DMT

Offene Systemdüse mit konventionellem Heizelement, für geringe Abstände, nicht mit dem Verteiler verschraubt

TECHNISCHE DATEN

4SMT/4DMT

Schmelzekanal-Ød 3,8 mm

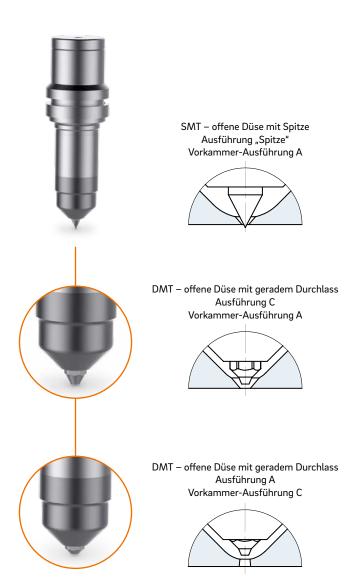
Düsenstück SMT – offen mit Spitze

DMT - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

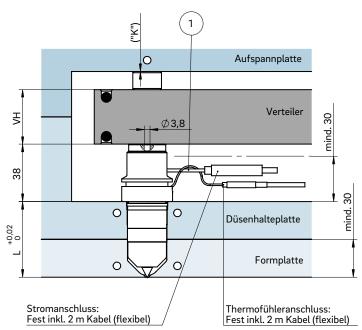
Nennlänge der Düse (L) in mm

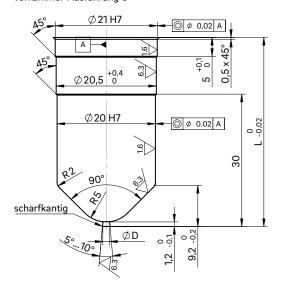

50 | 60 | 80 | 100 **•** • • • •

Für weitere Düsenlängen kontaktieren Sie uns!

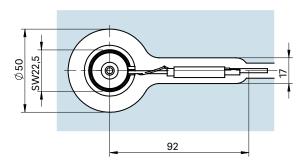
* Volt Alternating Current (Wechselstrom)


■ verfügbar





Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

① Strom- und Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 5SMT/5DMT

Offene Systemdüse mit konventionellem Heizelement, für geringe Abstände, nicht mit dem Verteiler verschraubt

TECHNISCHE DATEN

5SMT/5DMT

Schmelzekanal-Ød 4,8 mm

Düsenstück SMT – offen mit Spitze

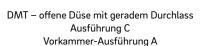
DMT – offen mit geradem

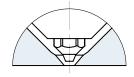
Durchlass

Betriebsspannung 230 V_{AC}*

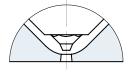
Nennlänge der Düse (L) in mm

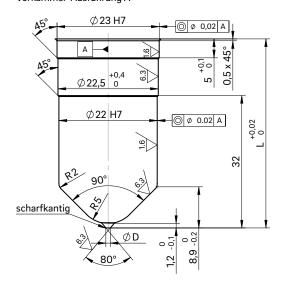
50	60	80	100	120	150

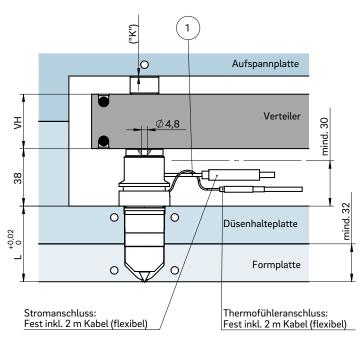

Für weitere Düsenlängen kontaktieren Sie uns!

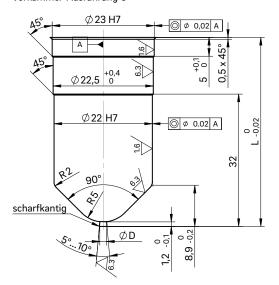

* Volt Alternating Current (Wechselstrom)

lacktriange verfügbar \Box auf Anfrage

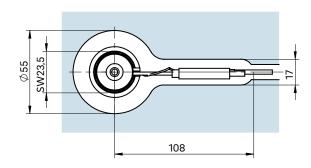



DMT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C





Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

① Strom- und Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8

SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 6SMT/6DMT

Offene Systemdüse mit konventionellem Heizelement, für geringe Abstände, nicht mit dem Verteiler verschraubt

TECHNISCHE DATEN

6SMT/6DMT

Schmelzekanal-Ød 6,0 mm

Düsenstück SMT – offen mit Spitze

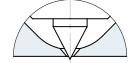
DMT - offen mit geradem

Durchlass

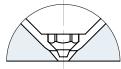
Betriebsspannung 230 V_{AC}*

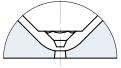
Nennlänge der Düse (L) in mm

50	60	80	100	120	150	200	250

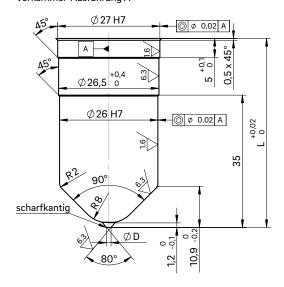

Für weitere Düsenlängen kontaktieren Sie uns!

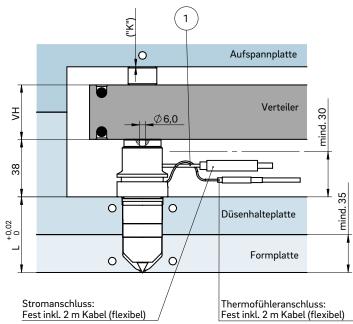
* Volt Alternating Current (Wechselstrom)

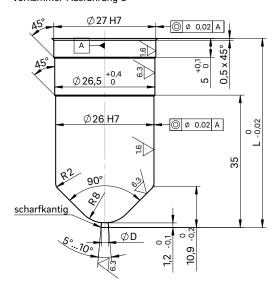

lacktriange verfügbar \Box auf Anfrage


SMT – offene Düse mit Spitze Ausführung "Spitze" Vorkammer-Ausführung A

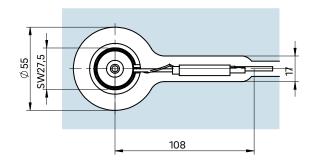
DMT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A


DMT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C





Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

① Strom- und Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8

SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 3SMF-K/3DMF-K

Offene Systemdüse mit Dickschicht-Heizelement (BlueFlow®), nicht mit dem Verteiler verschraubt

TECHNISCHE DATEN

3SMF-K/3DMF-K

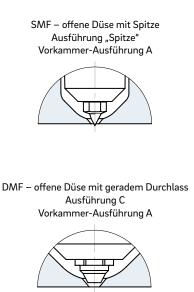
Schmelzekanal-Ød 2,8 mm

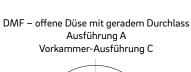
Düsenstück SMF – offen mit Spitze

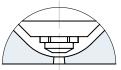
DMF - offen mit geradem

Durchlass

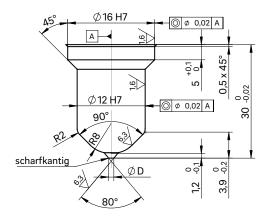
Betriebsspannung 230 V_{AC}*

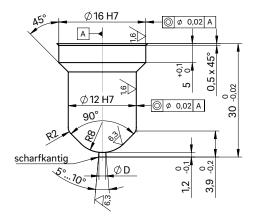

Nennlänge der Düse (L) 30 mm

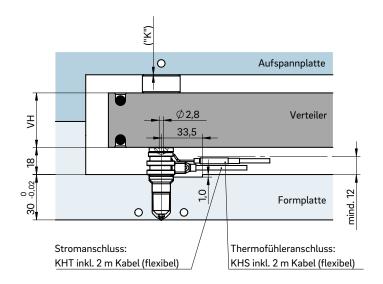

HINWEISE


Einsatz auch für seitliche Anwendung möglich.

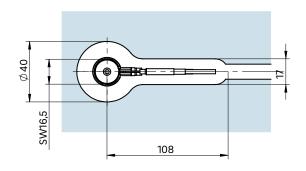
BlueFlow® Heißkanaldüse Typ SMF/DMF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!




^{*} Volt Alternating Current (Wechselstrom)



Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 5SMF-K/5DMF-K

Offene Systemdüse mit Dickschicht-Heizelement (BlueFlow®), nicht mit dem Verteiler verschraubt

TECHNISCHE DATEN

5SMF-K/5DMF-K

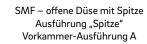
Schmelzekanal-Ød 4,8 mm

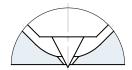
Düsenstück SMF – offen mit Spitze

DMF - offen mit geradem

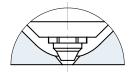
Durchlass

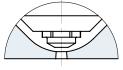
Betriebsspannung 230 V_{AC}*


Nennlänge der Düse (L) 30 mm


HINWEISE

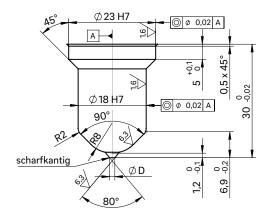
Einsatz auch für seitliche Anwendung möglich.

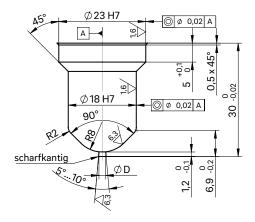

BlueFlow® Heißkanaldüse Typ SMF/DMF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!

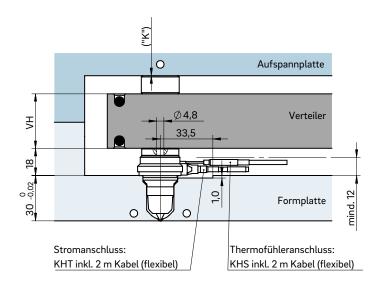


DMF – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A

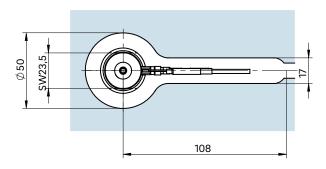
DMF – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C




^{*} Volt Alternating Current (Wechselstrom)



Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 8SMF-K/8DMF-K

Offene Systemdüse mit Dickschicht-Heizelement (BlueFlow®), nicht mit dem Verteiler verschraubt

TECHNISCHE DATEN

8SMF-K/8DMF-K

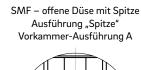
Schmelzekanal-Ød 7,5 mm

Düsenstück SMF – offen mit Spitze

DMF - offen mit geradem

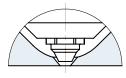
Durchlass

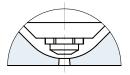
Betriebsspannung 230 V_{AC}*


Nennlänge der Düse (L) 30 mm

HINWEISE

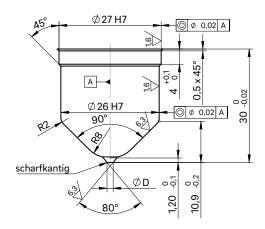
Einsatz auch für seitliche Anwendung möglich.

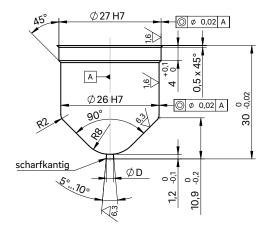

BlueFlow® Heißkanaldüse Typ SMF/DMF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!

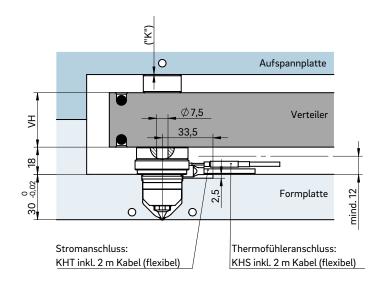


DMF – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A

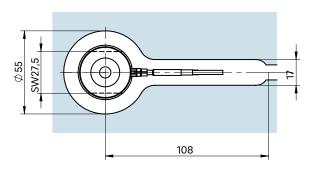
DMF – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C




^{*} Volt Alternating Current (Wechselstrom)



Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 5SMT-K/5DMT-K

Offene Systemdüse mit konventionellem Heizelement, nicht mit dem Verteiler verschraubt

TECHNISCHE DATEN

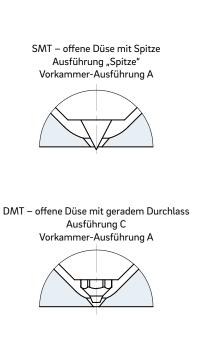
5SMT-K/5DMT-K

Schmelzekanal-Ød 4,8 mm

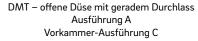
Düsenstück SMT – offen mit Spitze

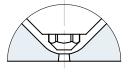
DMT – offen mit geradem

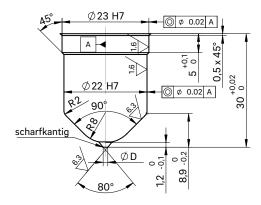
Durchlass

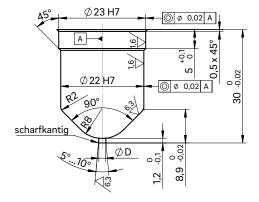

Betriebsspannung 230 V_{AC}*

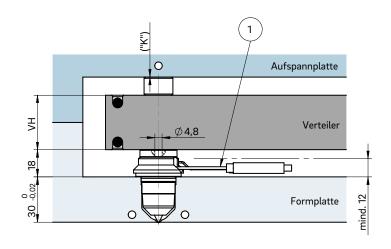
Nennlänge der Düse (L) 30 mm


HINWEISE

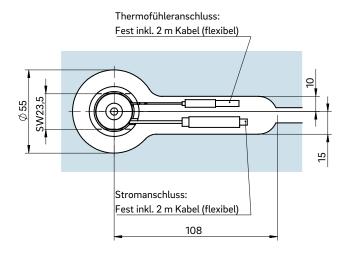

Einsatz auch für seitliche Anwendung möglich.




^{*} Volt Alternating Current (Wechselstrom)



Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

① Strom- und Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Heißkanaldüse Typ 3STF/3DTF

Offene Systemdüse mit Dickschicht-Heizelement (BlueFlow®), verschraubt von der Trennebene

TECHNISCHE DATEN

3STF/3DTF

Schmelzekanal-Ød 2,8 mm

Düsenstück STF – offen mit Spitze

DTF - offen mit geradem

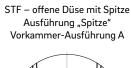
Durchlass

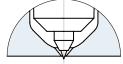
Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

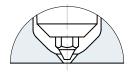
50 80 120

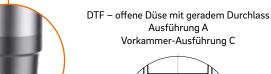
Für weitere Düsenlängen kontaktieren Sie uns!


* Volt Alternating Current (Wechselstrom)

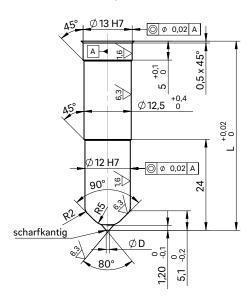

■ verfügbar

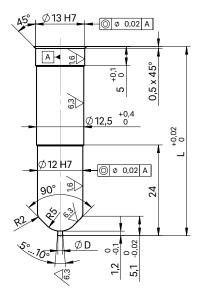
HINWEISE


BlueFlow® Heißkanaldüse Typ STF/DTF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!

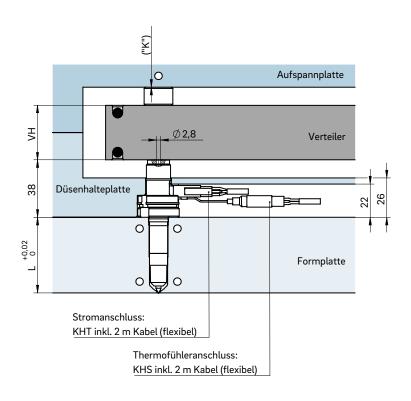


DTF – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A

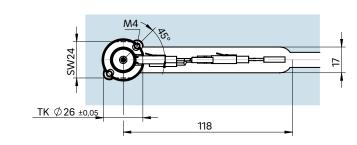


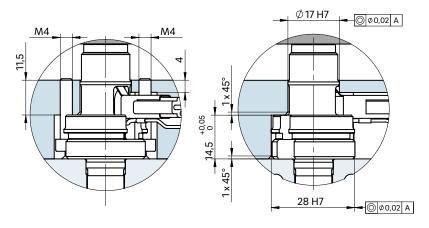


Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A



Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A




Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss

SW = Abflachung am Düsenkopf

Heißkanaldüse Typ 4STT/4DTT

Offene Systemdüse mit konventionellem Heizelement, verschraubt von der Trennebene

TECHNISCHE DATEN

4STT/4DTT

Schmelzekanal-Ød 3,8 mm

Düsenstück STT - offen mit Spitze

DTT - offen mit geradem

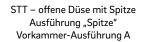
Durchlass

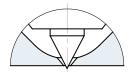
Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

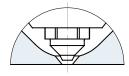
50 60 80

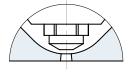
Für weitere Düsenlängen kontaktieren Sie uns!


* Volt Alternating Current (Wechselstrom)

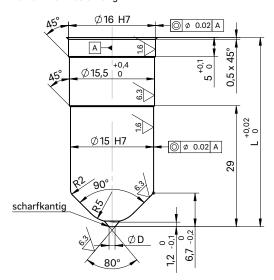

■ verfügbar

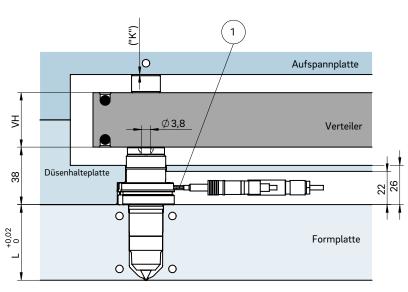
HINWEISE

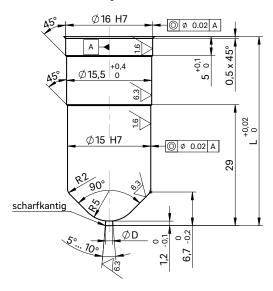

Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

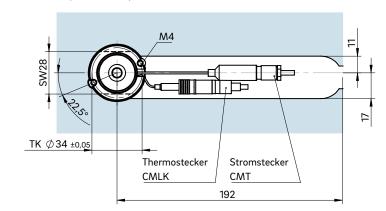


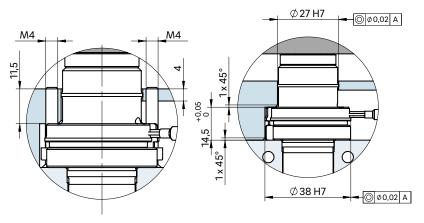
DTT - offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A


DTT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C




Offene Düse mit Spitze Düsenstück Ausführung C Vorkammer-Ausführung A


Beispiel Ausnehmung für Düsenkopf, Strom- und Thermofühleranschluss


Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

 $\ensuremath{ \bigcirc }$ Strom- und Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8

SW = Abflachung am Düsenkopf

Heißkanaldüse Typ 5STT/5DTT

Offene Systemdüse mit konventionellem Heizelement, verschraubt von der Trennebene

TECHNISCHE DATEN

5STT/5DTT

Schmelzekanal-Ød 4,8 mm

Düsenstück STT – offen mit Spitze

DTT - offen mit geradem

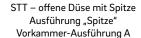
Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

50 60 80 100 120 **•** • • • • •

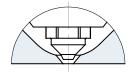
Für weitere Düsenlängen kontaktieren Sie uns!

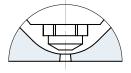

* Volt Alternating Current (Wechselstrom)

■ verfügbar

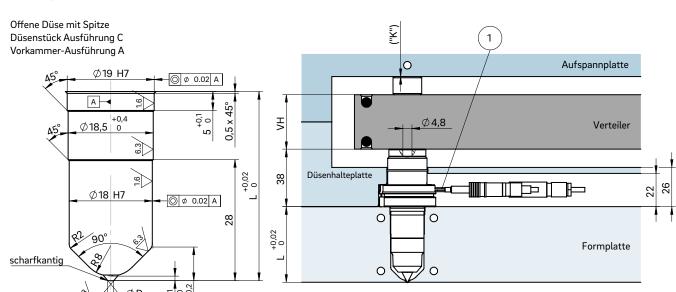
HINWEISE

Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

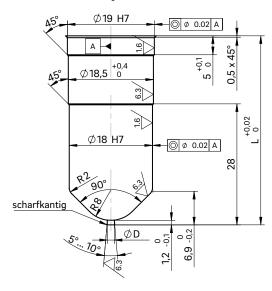


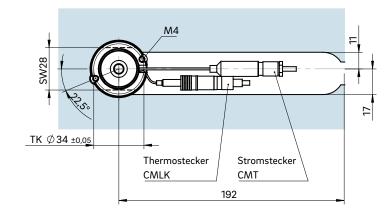


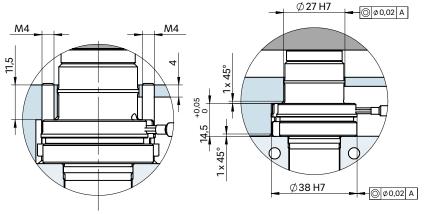
DTT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A



DTT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C




 $Beispiel\,Ausnehmung\,f\"{u}r\,D\"{u}senkopf,\,Strom-\,und\,Thermof\"{u}hleranschluss$


Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

① Strom- und Thermofühleranschluss in diesem Bereich nur 1 × biegbar; Mindestradius R8 SW = Abflachung am Düsenkopf

Heißkanaldüse Typ 6STT/6DTT

Offene Systemdüse mit konventionellem Heizelement, verschraubt von der Trennebene

TECHNISCHE DATEN

6STT/6DTT

Schmelzekanal-Ød 6,0 mm

Düsenstück STT – offen mit Spitze

DTT - offen mit geradem

Durchlass

Betriebsspannung 230 V_{AC}*

Nennlänge der Düse (L) in mm

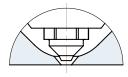
50 60 80 100 120 **•** • • • • •

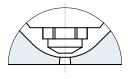
Für weitere Düsenlängen kontaktieren Sie uns!

* Volt Alternating Current (Wechselstrom)

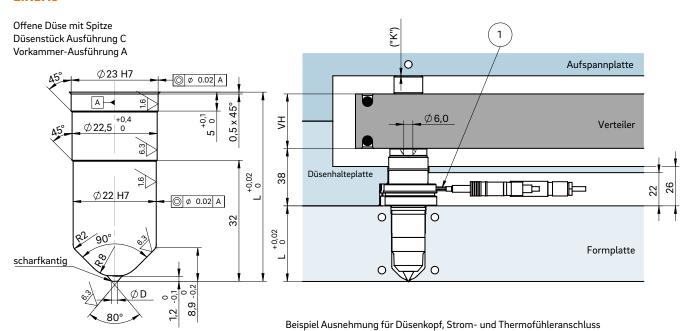
■ verfügbar

HINWEISE

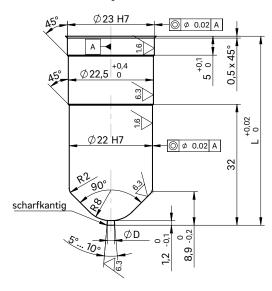

Stromstecker CMT und Thermostecker CMLK sind separat zu bestellen.

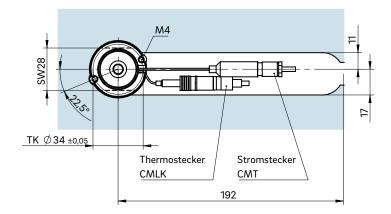


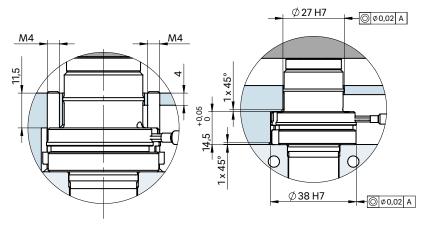
DTT – offene Düse mit geradem Durchlass Ausführung C Vorkammer-Ausführung A



DTT – offene Düse mit geradem Durchlass Ausführung A Vorkammer-Ausführung C






Offene Düse mit geradem Durchlass Düsenstück Ausführung A Vorkammer-Ausführung C

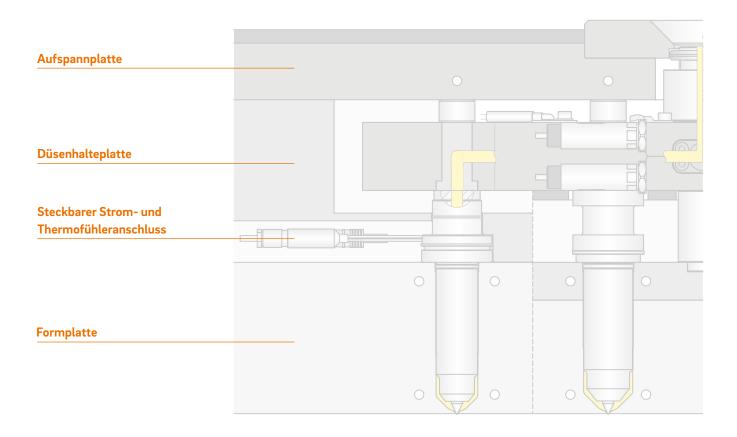
Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Aufspannplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

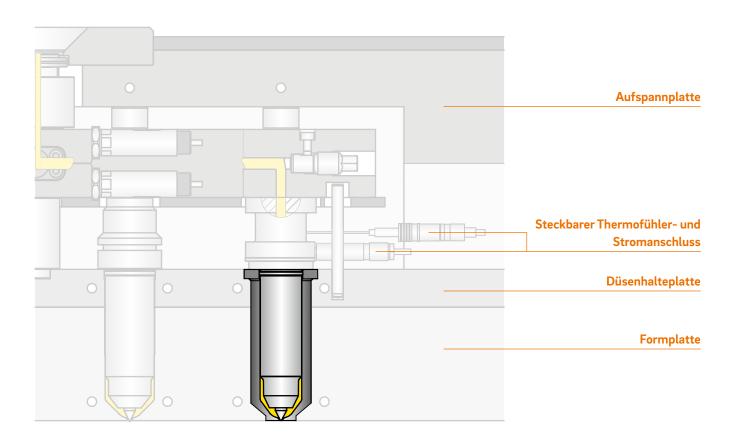
 Strom- und Thermofühleranschluss in diesem Bereich nur 1 x biegbar; Mindestradius R8

SW = Abflachung am Düsenkopf

2.3 Vorkammerbuchsen


VORKAMMER	BUCHSEN	Seite
	LA/LAV Ausführung LA mit verlängertem Zapfen und Ausführung LAV mit verlängertem Zapfen und Verschleißschutz	30
I	LB Ausführung LB mit verlängertem Zapfen	40
J	LC/LCV Ausführung LC mit verlängertem Zapfen und Ausführung LCV mit verlängertem Zapfen und Verschleißschutz	50
	LD Ausführung LD mit verlängertem Zapfen	60
	VA/VAV Ausführung VA und VAV mit Verschleißschutz	70
	VC/VCV Ausführung VC und VCV mit Verschleißschutz	80

2.3.10 01/18 Technische Änderungen vorbehalten



Übersicht im Gesamtaufbau

Vorkammerbuchsen

2.3.20

Vorkammerbuchse Typ LA/LAV

Ausführung LA mit verlängertem Zapfen und Ausführung LAV mit verlängertem Zapfen und Verschleißschutz

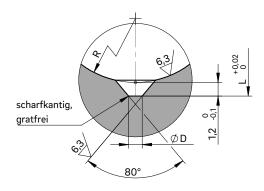
TECHNISCHE DATEN

Maßangaben

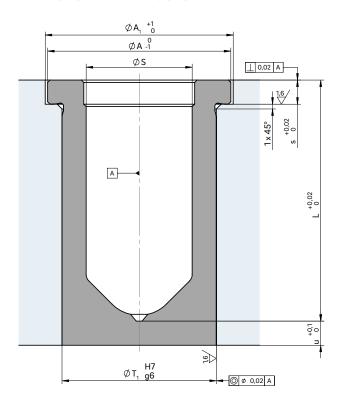
	Ausführung (mm)								
	ØΑ	øs	ØT,	s	u	ØA,	R		
15LA	35	15	22	5	5	36	5		
20LA	35	20	28	5	15	36	5		
22LA/LAV	38	22	32	5	15	39	8		
26LA/LAV	45	26	36	5	15	46 1, 2	8		
32LA	50	32	42	9	15	56	8		
38LA	59	38	48	12	20	60	12		

¹ ØA₁ = 49 mm beim Düsentyp 8SET/8DET

HINWEISE


Beim Einsatz der Vorkammerbuchse in den Größen ØS 26 mm, ØS 32 mm und ØS 38 mm in Verbindung mit den Düsentypen _ET und _HT empfehlen wir die Rücksprache mit der Konstruktion.

Nach dem Erodieren der Vorkammerbuchse muss diese spannungsarm geglüht werden (1 Stunde bei 470°C).


VORKAMMERAUSFÜHRUNG A/B

Für offene Düsen mit Spitze / offene Düsen mit geradem Durchlass für Vorkammerausführung A/B und Düsenstück C

² ØA, = 56 mm beim Düsentyp 8SHT

EINBAU VORKAMMERBUCHSE

Bei Vorkammerbuchsen mit verlängertem Zapfen geht die Nestkontur durch das Maß "L"

Bezeichnung						Vork	amm	erbuchs	en Ty	/p/Länge	(mm)					
Düsentyp	L:	= 50		L=	60			L=	80			L=	100		L=	120	
4SHF/4DHF	15LA			15LA				15LA									
4STT/4DTT	15LA			15LA				15LA									
4SMT/4DMT	20LA			20LA				20LA				20LA					
5SHT/5DHT	22LA		22LAV	22LA		22LAV		22LA		22LAV		22LA		22LAV			
5SMT/5DMT	22LA		22LAV	22LA		22LAV		22LA		22LAV		22LA		22LAV	22LA		22LAV
6SHF/6DHF	22LA		22LAV	22LA		22LAV		22LA		22LAV		22LA		22LAV	22LA		22LAV
6STT/6DTT	22LA		22LAV	22LA		22LAV		22LA		22LAV		22LA		22LAV	22LA		22LAV
6SHT/6DHT	26LA		26LAV	26LA		26LAV		26LA		26LAV		26LA		26LAV	26LA		26LAV
6SMT/6DMT	26LA		26LAV	26LA		26LAV		26LA		26LAV		26LA		26LAV	26LA		26LAV
8SET/8DET	26LA		26LAV	26LA		26LAV		26LA		26LAV		26LA		26LAV	26LA		26LAV
8SHT/8DHT	26LA		26LAV	26LA		26LAV		26LA		26LAV		26LA		26LAV	26LA		26LAV
10SHT/10DHT				32LA				32LA				32LA			32LA		
12SET/12DET				38LA				38LA				38LA			38LA		
12SHT/12DHT				38LA				38LA				38LA			38LA		

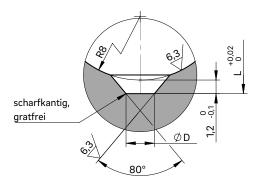
lacksquare verfügbar $\ \square$ auf Anfrage

Vorkammerbuchse Typ LB

Ausführung LB mit verlängertem Zapfen

TECHNISCHE DATEN

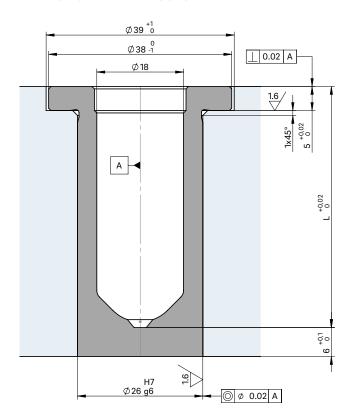
Maßangaben


	Ausführung (mm)									
	ØA	øs	ØT,	s	u	ØA,	R			
18LB	38	18	26	5	6	39	8			

HINWEISE

Nach dem Erodieren der Vorkammerbuchse muss diese spannungsarm geglüht werden (1 Stunde bei 470 °C).

VORKAMMERAUSFÜHRUNG A/B



Für offene Düsen mit Spitze / offene Düsen mit geradem Durchlass für Vorkammerausführung A/B und Düsenstück C

EINBAU VORKAMMERBUCHSE

Bei Vorkammerbuchsen mit verlängertem Zapfen geht die Nestkontur durch das Maß "L"

Bezeichnung	Vorka	Vorkammerbuchsen Typ/Länge (mm)										
Düsentyp	L=50	L=60	L=80	L=100								
5SEF/5DEF	■ 18LB	■ 18LB	■ 18LB									
5SHF/5DHF	■ 18LB	■ 18LB	■ 18LB	■ 18LB								
5STT/5DTT	■ 18LB	■ 18LB	■ 18LB	■ 18LB								

verfügbar

Vorkammerbuchse Typ LC/LCV

Ausführung LC mit verlängertem Zapfen und Ausführung LCV mit verlängertem Zapfen und Verschleißschutz

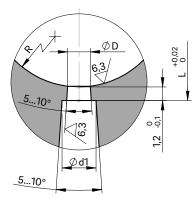
TECHNISCHE DATEN

Maßangaben

	Ausführung (mm)										
	ØA	øs	ØT ₁	s	u	ØA,	R				
15LC	35	15	22	5	5	36	5				
20LC	35	20	28	5	15	36	5				
22LC/LCV	38	22	32	5	15	39	8				
26LC/LCV	45	26	36	5	15	46 1, 2	8				
32LC	50	32	42	9	15	56	8				
38LC	59	38	48	12	20	60	12				

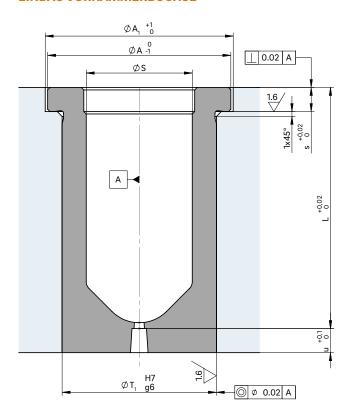
¹ ØA₁ = 49 mm beim Düsentyp 8DET

HINWEISE


Beim Einsatz der Vorkammerbuchse in den Größen ØS 26 mm, ØS 32 mm und ØS 38 mm in Verbindung mit den Düsentypen _ET und _HT empfehlen wir die Rücksprache mit der Konstruktion.

Nach dem Erodieren der Vorkammerbuchse muss diese spannungsarm geglüht werden (1 Stunde bei 470°C).

VORKAMMERAUSFÜHRUNG C/D


Ød1 um 0,5 mm größer als ØD

Für offene Düsen mit geradem Durchlass für Vorkammerausführung C/D und Düsenstück A

² ØA₁ = 56 mm beim Düsentyp 8DHT

EINBAU VORKAMMERBUCHSE

Bei Vorkammerbuchsen mit verlängertem Zapfen geht die Nestkontur durch das Maß "L"

Bezeichnung							Vork	amm	erbuchs	en Ty	/p/Länge	(mm)						
Düsentyp	L=50			L=60				L=80			L=100			L=120					
4DHF	15LC				15LC				15LC										
4DTT	15LC				15LC				15LC										
4DMT	20LC				20LC				20LC				20LC						
5DHT	22LC		22LCV		22LC		22LCV		22LC		22LCV		22LC		22LCV				
5DMT	22LC		22LCV		22LC		22LCV		22LC		22LCV		22LC		22LCV		22LC		22LCV
6DHF	22LC		22LCV		22LC		22LCV		22LC		22LCV		22LC		22LCV		22LC		22LCV
6DTT	22LC		22LCV		22LC		22LCV		22LC		22LCV		22LC		22LCV		22LC		22LCV
6DHT	26LC		26LCV		26LC		26LCV		26LC		26LCV		26LC		26LCV		26LC		26LCV
6DMT	26LC		26LCV		26LC		26LCV		26LC		26LCV		26LC		26LCV		26LC		26LCV
8DET	26LC		26LCV		26LC		26LCV		26LC		26LCV		26LC		26LCV		26LC		26LCV
8DHT	26LC		26LCV		26LC		26LCV		26LC		26LCV		26LC		26LCV		26LC		26LCV
10DHT					32LC				32LC				32LC				32LC		
12DET					38LC				38LC				38LC				38LC		
12DHT					38LC				38LC				38LC				38LC		

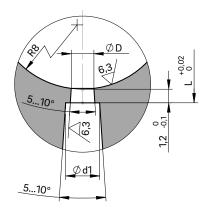
lacksquare verfügbar $\ \square$ auf Anfrage

Vorkammerbuchse Typ LD

Ausführung LD mit verlängertem Zapfen

TECHNISCHE DATEN

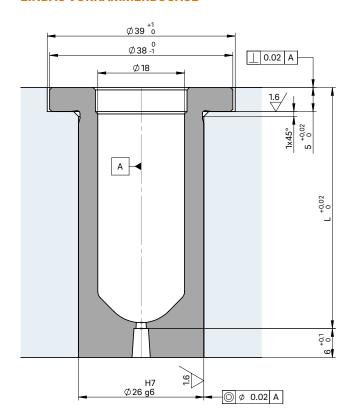
Maßangaben


	Ausführung (mm)									
	ØA	u	ØA,	R						
18LD	38	18	26	5	6	39	8			

HINWEISE

Nach dem Erodieren der Vorkammerbuchse muss diese spannungsarm geglüht werden (1 Stunde bei 470 °C).

VORKAMMERAUSFÜHRUNG C/D


Ød1 um 0,5 mm größer als ØD

Für offene Düsen mit geradem Durchlass für Vorkammerausführung C/D und Düsenstück A

EINBAU VORKAMMERBUCHSE

Bei Vorkammerbuchsen mit verlängertem Zapfen geht die Nestkontur durch das Maß "L"

Bezeichnung	Vorka	Vorkammerbuchsen Typ/Länge (mm)									
Düsentyp	50	60	80	100							
5DEF	■ 18LD	■ 18LD	■ 18LD								
5DHF	■ 18LD	■ 18LD	■ 18LD	■ 18LD							
5DTT	■ 18LD	■ 18LD	■ 18LD	■ 18LD							

verfügbar

Vorkammerbuchse Typ VA/VAV

Ausführung VA und VAV mit Verschleißschutz

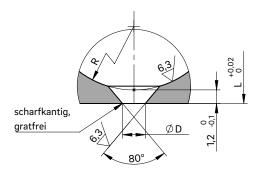
TECHNISCHE DATEN

Maßangaben

	Ausführung (mm)											
	ØA	øs	ØT ₁	s	ØA,	R	ØР	t,	t			
15VA	35	15	22	5	36	5	12	2,3	2,5			
20VA	35	20	28	5	36	5	16	2,3	2,5			
22VA/VAV	38	22	32	5	39	8	16	2,3	2,5			
26VA/VAV	45	26	36	5	46 ^{1, 2}	8	16	2,3	2,5			
32VA	50	32	42	9	56	8	20	3,3	3,5			
38VA	59	38	48	12	60	12	26	4,3	4,5			

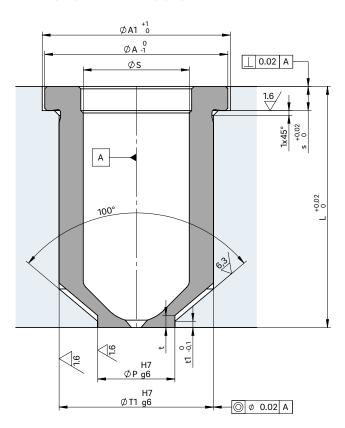
¹ ØA₁ = 49 mm beim Düsentyp 8SET/8DET

HINWEISE


Beim Einsatz der Vorkammerbuchse in den Größen ØS 26 mm, ØS 32 mm und ØS 38 mm in Verbindung mit den Düsentypen _ET und _HT empfehlen wir die Rücksprache mit der Konstruktion.

Nach dem Erodieren der Vorkammerbuchse muss diese spannungsarm geglüht werden (1 Stunde bei 470°C).

VORKAMMERAUSFÜHRUNG A/B



Für offene Düsen mit Spitze / offene Düsen mit geradem Durchlass für Vorkammerausführung A/B und Düsenstück C

² ØA, = 56 mm beim Düsentyp 8SHT

EINBAU VORKAMMERBUCHSE

Bezeichnung							Vork	amm	erbuchs	en Ty	/p/Länge	(mm)					
Düsentyp	L:	50			L=	60			L=	80			L=	100		L=	120	
4SHF/4DHF	15VA				15VA				15VA									
4STT/4DTT	15VA				15VA				15VA									
4SMT/4DMT	20VA				20VA				20VA				20VA					
5SHT/5DHT	22VA		22VAV		22VA		22VAV		22VA		22VAV		22VA		22VAV			
5SMT/5DMT	22VA		22VAV		22VA		22VAV		22VA		22VAV		22VA		22VAV	22VA		22VAV
6SHF/6DHF	22VA		22VAV		22VA		22VAV		22VA		22VAV		22VA		22VAV	22VA		22VAV
6STT/6DTT	22VA		22VAV		22VA		22VAV		22VA		22VAV		22VA		22VAV	22VA		22VAV
6SHT/6DHT	26VA		26VAV	-	26VA		26VAV		26VA		26VAV		26VA		26VAV	26VA		26VAV
6SMT/6DMT	26VA		26VAV		26VA		26VAV		26VA		26VAV		26VA		26VAV	26VA		26VAV
8SET/8DET	26VA		26VAV		26VA		26VAV		26VA		26VAV		26VA		26VAV	26VA		26VAV
8SHT/8DHT	26VA		26VAV		26VA		26VAV		26VA		26VAV		26VA		26VAV	26VA		26VAV
10SHT/10DHT				-	32VA				32VA				32VA			32VA		
12SET/12DET				-	38VA				38VA				38VA			38VA		
12SHT/12DHT					38VA				38VA				38VA			38VA		

■ verfügbar □ auf Anfrage

Vorkammerbuchse Typ VC/VCV

Ausführung VC und VCV mit Verschleißschutz

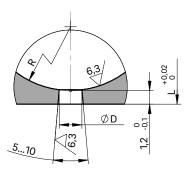
TECHNISCHE DATEN

Maßangaben

	Ausführung (mm)									
	ØA	øs	ØT ₁	s	ØA,	R	ØР	t,	t	
15VC	35	15	22	5	36	5	12	2,3	2,5	
20VC	35	20	28	5	36	5	16	2,3	2,5	
22VC/VAC	38	22	32	5	39	8	16	2,3	2,5	
26VC/VAC	45	26	36	5	46 ^{1, 2}	8	16	2,3	2,5	
32VC	50	32	42	9	56	8	20	3,3	3,5	
38VC	59	38	48	12	60	12	26	4,3	4,5	

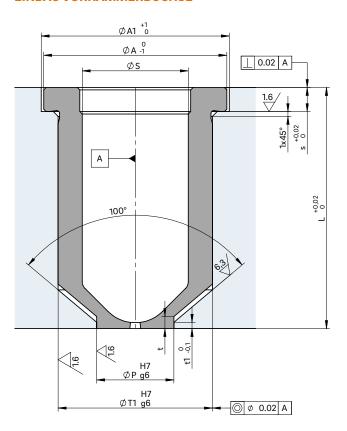
¹ ØA₁ = 49 mm beim Düsentyp 8DET

HINWEISE


Beim Einsatz der Vorkammerbuchse in den Größen ØS 26 mm, ØS 32 mm und ØS 38 mm in Verbindung mit den Düsentypen _ET und _HT empfehlen wir die Rücksprache mit der Konstruktion.

Nach dem Erodieren der Vorkammerbuchse muss diese spannungsarm geglüht werden (1 Stunde bei 470 °C).

VORKAMMERAUSFÜHRUNG C/D



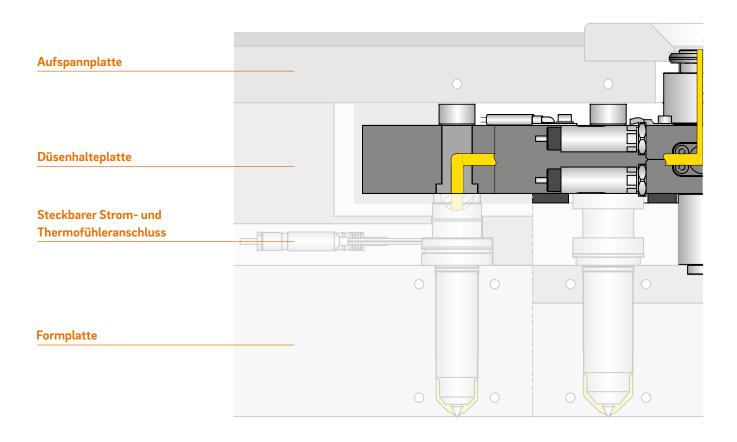
Für offene Düsen mit geradem Durchlass für Vorkammerausführung C/D und Düsenstück A

² ØA₁ = 56 mm beim Düsentyp 8DHT

EINBAU VORKAMMERBUCHSE

Bezeichnung						Vork	amn	nerbuchs	en Ty	/p/Länge	(mm)					
Düsentyp	L:	= 50		L=	60			L	80			L=	100		L=	120	
4DHF	15VC			15VC				15VC									
4DTT	15VC			15VC				15VC									
4DMT	20VC			20VC				20VC				20VC					
5DHT	22VC		22VCV	22VC		22VCV		22VC		22VCV		22VC		22VCV			
5DMT	22VC		22VCV	22VC		22VCV		22VC		22VCV		22VC		22VCV	22VC		22VCV
6DHF	22VC		22VCV	22VC		22VCV		22VC		22VCV		22VC		22VCV	22VC		22VCV
6DTT	22VC		22VCV	22VC		22VCV		22VC		22VCV		22VC		22VCV	22VC		22VCV
6DHT	26VC		26VCV	26VC		26VCV		26VC		26VCV		26VC		26VCV	26VC		26VCV
6DMT	26VC		26VCV	26VC		26VCV		26VC		26VCV		26VC		26VCV	26VC		26VCV
8DET	26VC		26VCV	26VC		26VCV		26VC		26VCV		26VC		26VCV	26VC		26VCV
8DHT	26VC		26VCV	26VC		26VCV		26VC		26VCV		26VC		26VCV	26VC		26VCV
10DHT				32VC				32VC				32VC			32VC		
12DET				38VC				38VC				38VC			38VC		
12DHT				38VC				38VC				38VC			38VC		

■ verfügbar □ auf Anfrage


2.4 Heißkanalverteiler/Rasant-Systeme

Verteiler GERADE VERTEI	ED.	Seite
(2 2 2 2)	GCP Verteilerlänge (VL) 160-360	30
	GCP Verteilerlänge (VL) 410-510	40
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	GDP Verteilerlänge (VL) 160-360	50
	GDP Verteilerlänge (VL) 410-510	60
H-VERTEILER	HCP/HDP/HEP	70
KREUZVERTEILE	R KCP4B/KDP4B Verteilerlänge (VL) 135-165	80
	KCP4B/KDP4B Verteilerlänge (VL) 180	90
	KCP4B/KDP4B Verteilerlänge (VL) 210	100
38	KCP4B/KDP4B Verteilerlänge (VL) 240/270/300	110
STERNVERTEILE	R SCP/SDP/SEP	120
T-VERTEILER	TCP/TDP/TEP	130
Rasant-Sys	teme	
	Rasant-Systeme Konfiguration im CADHOC® System-Designer	140

Übersicht im Gesamtaufbau

Heißkanalverteiler

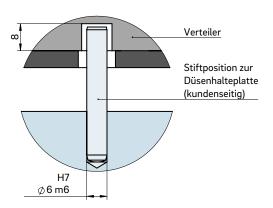
2.4.20

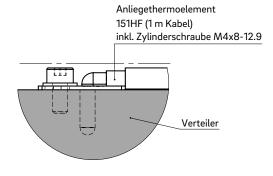
Gerader Verteiler Typ GCP

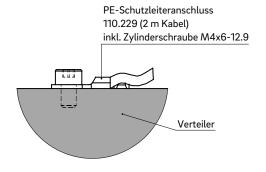
Verteilerlänge (VL) 160-360

TECHNISCHE DATEN

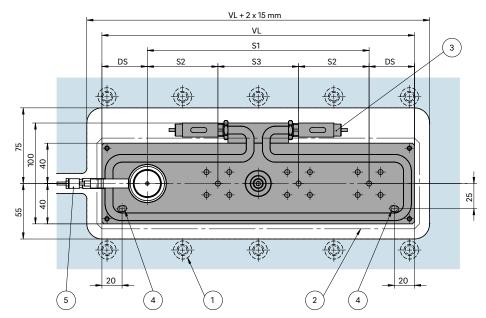
GCP VL 160-360


Verteilerhöhe (VH) 36 mm


Betriebsspannung 230 V_{AC}*


Verteilerlänge (VL)	160	210	260	310	360
Regelkreise	1	1	1	1	1
Leistung (Watt) pro Regelkreis					

^{*} Volt Alternating Current (Wechselstrom)





Ansicht auf Düsenspitze

- DS Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8
- S1 Größtes Stichmaß (max. Stichmaß)
- S2 Stichmaß zwischen den Düsen (mind./max. Stichmaß)
- S3 Stichmaß zwischen den Düsen unter Berücksichtigung von Anschlusselement und Distanzstück (mind./max. Stichmaß)
- 1 Verteilernahe Verschraubung
- 2 Hochtemperatur-Isolierplatte
- 3 Heizungsanschlüsse
- 4 Mögliche Stiftposition
- 5 Ausnehmung und Steckerlage abhängig vom Düsentyp

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217

Auslegungsbeispiele/Balancierungen

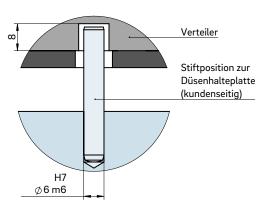
Тур		Kanal-Ød mm	Anzahlfach
GCP1B	• d	≤ 10	1
GCP2B	• d	≤ 8	2
GCP3-	• d	≤ 10	3
GCP3T	• d	≤ 8	3
GCP4B	d	≤ 8	4
GCP8T	• d	≤ 8	8

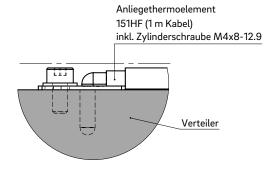
B = Balanciert T = Teilbalanciert - = Nicht balanciert

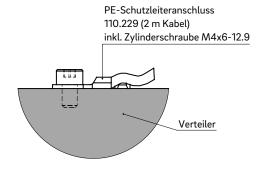
Gerader Verteiler Typ GCP

Verteilerlänge (VL) 410-510

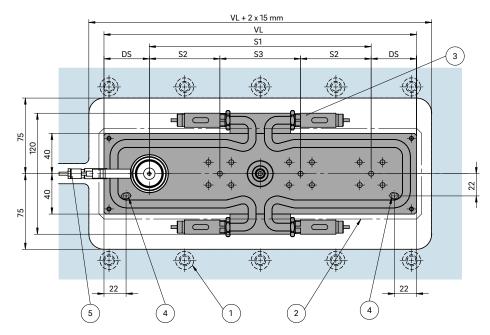
TECHNISCHE DATEN


GCP VL 410-510


Verteilerhöhe (VH)	36 mm
Betriebsspannung	230 V _{AC} *


Verteilerlänge (VL)	410	460	510
Regelkreise	2	2	2
Leistung (Watt) pro Regelkreis	2 × 850	2 × 950	2 × 1000

^{*} Volt Alternating Current (Wechselstrom)



Ansicht auf Düsenspitze

- DS Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8
- S1 Größtes Stichmaß (max. Stichmaß)
- S2 Stichmaß zwischen den Düsen (mind./max. Stichmaß)
- S3 Stichmaß zwischen den Düsen unter Berücksichtigung von Anschlusselement und Distanzstück (mind./max. Stichmaß)
- 1 Verteilernahe Verschraubung
- 3 Heizungsanschlüsse
- 4 Mögliche Stiftposition
- S Ausnehmung und Steckerlage abhängig vom Düsentyp

Verteilerhöhe (VH)

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217

Auslegungsbeispiele/Balancierungen

Тур		Kanal-Ød mm	Anzahlfach
GCP1B	• d	≤ 10	1
GCP2B	• d	≤ 10	2
GCP3-	• d	≤ 10	3
GCP3T	• d	≤ 8	3
GCP4B	•d	≤ 8	4
GCP6T	d • • • •	≤ 8	6
GCP8T	• d	≤ 8	8

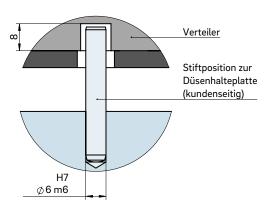
B = Balanciert T = Teilbalanciert - = Nicht balanciert

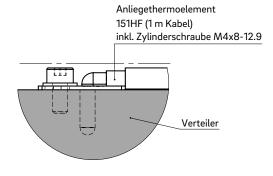
Gerader Verteiler Typ GDP

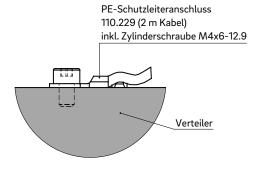
Verteilerlänge (VL) 160-360

TECHNISCHE DATEN

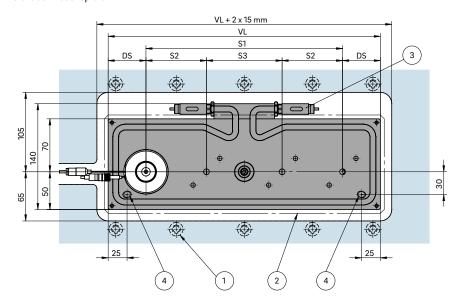
GDP VL 160-360

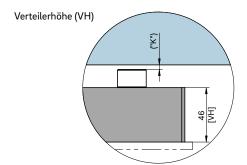

Verteilerhöhe (VH) 46 mm


Betriebsspannung 230 V_{AC}*


Verteilerlänge (VL)	160	210	260	310	360
Regelkreise	1	1	1	1	1
Leistung (Watt) pro Regelkreis					

^{*} Volt Alternating Current (Wechselstrom)





Ansicht auf Düsenspitze

DS Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12

- S1 Größtes Stichmaß (max. Stichmaß)
- S2 Stichmaß zwischen den Düsen (mind./max. Stichmaß)
- S3 Stichmaß zwischen den Düsen unter Berücksichtigung von Anschlusselement und Distanzstück (mind./max. Stichmaß)
- 1 Verteilernahe Verschraubung
- 2 Hochtemperatur-Isolierplatte
- $\ensuremath{\ensuremath{\mathfrak{3}}}{\ensuremath{\mathsf{Heizungsanschl}}}{\ensuremath{\mathsf{sanschl}}}{\ensur$
- Mögliche Stiftposition
- S Ausnehmung und Steckerlage abhängig vom Düsentyp

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264

Auslegungsbeispiele/Balancierungen

Тур		Kanal-Ød mm	Anzahlfach
GDP1B	• <u>d</u>	≥ 12 16	1
GDP2B	• d	≥ 12 16	2
GDP3-	• <u>d</u>	≥ 12 16	3
GDP3T	● d ●	≤ 6	3
GDP4B	d	≤ 12 16	4
GDP6T		≤ 8	6

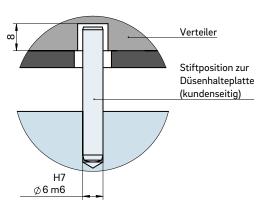
B = Balanciert T = Teilbalanciert - = Nicht balanciert

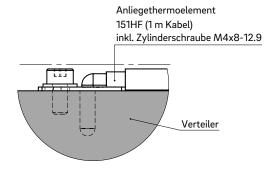
Gerader Verteiler Typ GDP

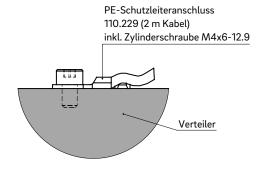
Verteilerlänge (VL) 410-510

TECHNISCHE DATEN

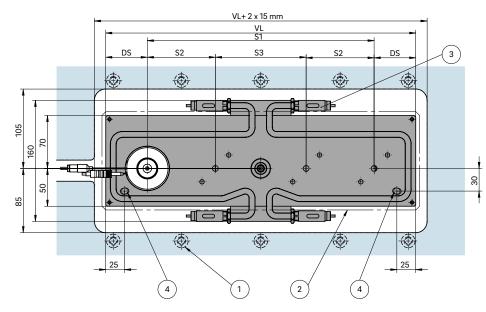
GDP VL 410-510

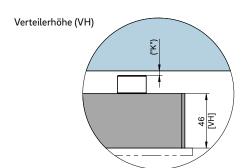

Verteilerhöhe (VH) 46 mm


Betriebsspannung 230 V_{AC}*


Verteilerlänge (VL)	410	460	510
Regelkreise	2	2	2
Leistung (Watt) pro Regelkreis	2 × 850	2 × 950	2 × 1000

^{*} Volt Alternating Current (Wechselstrom)





Ansicht auf Düsenspitze

- DS Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12
- Größtes Stichmaß (max. Stichmaß)
- S2 Stichmaß zwischen den Düsen (mind./max. Stichmaß)
- S3 Stichmaß zwischen den Düsen unter Berücksichtigung von Anschlusselement und Distanzstück (mind./max. Stichmaß)
- ① Verteilernahe Verschraubung
- 2 Hochtemperatur-Isolierplatte
- 3 Heizungsanschlüsse
- 4 Mögliche Stiftposition
- (5) Ausnehmung und Steckerlage abhängig vom Düsentyp

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264

Auslegungsbeispiele/Balancierungen

Тур		Kanal-Ød mm	Anzahlfach
GDP1B	• <u>d</u>	≥ 12 16	1
GDP2B	• d	≥ 12 16	2
GDP3-	• d	≥ 12 16	3
GDP3T	• d	≤ 6	3
GDP4B	d	≥ 12 16	4
GDP6T	d	≤ 8	6
GDP8T	• • • • • •	≥ 12 16	8

B = Balanciert T = Teilbalanciert - = Nicht balanciert

H-Verteiler Typ HCP/HDP/HEP

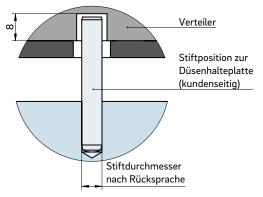
TECHNISCHE DATEN

HCP/HDP/HEP

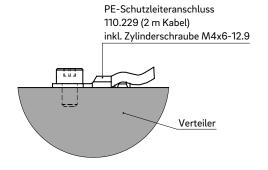
Verteilerhöhe (VH) HCP: 36 mm

HDP: 46 mm **HEP:** 56 mm

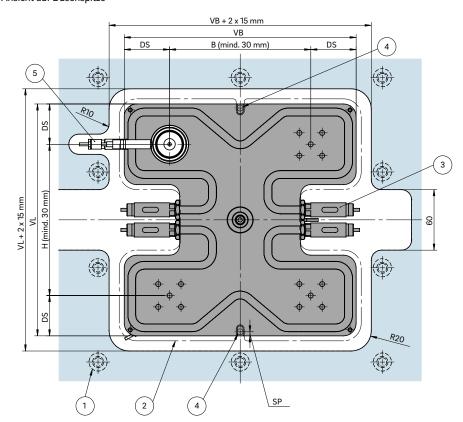
Betriebsspannung 230 V_{AC}*


Verteilerlänge (VL) $H + 2 \times DS$

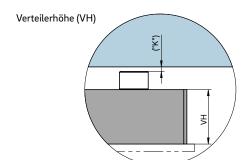
Verteilerbreite (VB) $B + 2 \times DS$


Die Heizleistung pro Regelkreis wird individuell berechnet.

* Volt Alternating Current (Wechselstrom)



Anliegethermoelement
151HF (1 m Kabel)
inkl. Zylinderschraube M4x8-12.9



Ansicht auf Düsenspitze

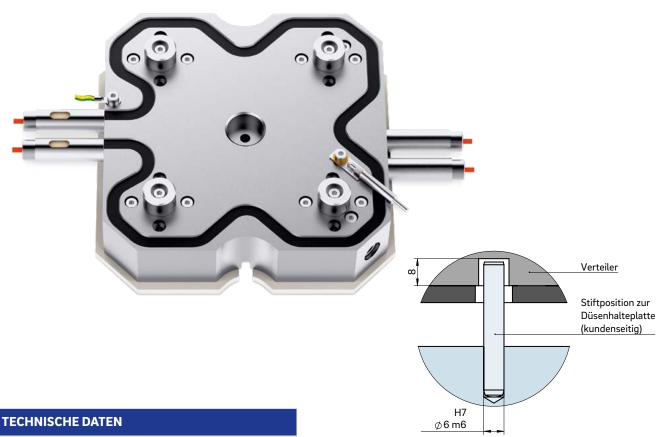
DS Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12

- H Stichmaß zwischen den Düsen
- B Stichmaß zwischen den Düsen
- 1 Verteilernahe Verschraubung
- 2 Hochtemperatur-Isolierplatte
- 3 Heizungsanschlüsse4 Mögliche Stiftposition
- Mögliche Stiftposition "SP" = d/2 + 1 mm
- 5 Ausnehmung und Steckerlage abhängig vom Düsentyp

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Auslegungsbeispiele/Balancierungen


Тур		HCP = 36 (VH) Kanal-Ød mm	HDP = 46 (VH) Kanal-Ød mm	HEP = 56 (VH) Kanal-Ød mm	Anzahl fach
H_P4B	d	≤ 10	≥ 12 16	> 16	4
H_P6T	d	≤ 10	≥ 12 16	>16	6
H_P6B	d		≤ 8	≤ 10	6
H_P8B	d	≤ 10	≥ 12 16	> 16	8
H_P12B	d		≤ 8	≤ 10	12
H_P16B	d 0	≤ 10	≥ 12 16	> 16	16

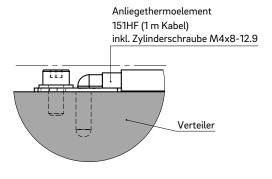
B = Balanciert T = Teilbalanciert

Kreuzverteiler Typ KCP4B/KDP4B

Verteilerlänge (VL) 135-165

KCP4B/KDP4B 135/165

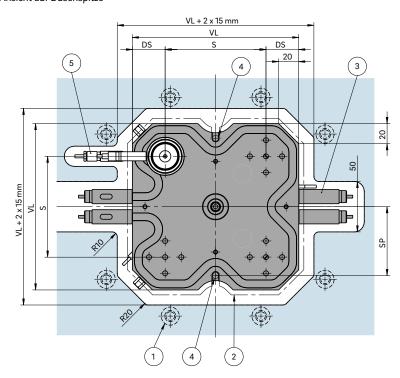
Verteilerhöhe (VH) KCP: 36 mm


KDP: 46 mm

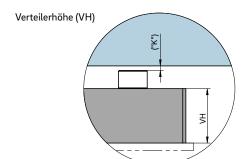
Betriebsspannung 230 V_{AC}*

Verteilerlänge (VL)	135	165
Stiftposition (SP)	63,5	68,0
Regelkreise	1	1
Leistung (Watt) pro Regelkreis	2 × 850	2 × 1000

^{*} Volt Alternating Current (Wechselstrom)



PE-Schutzleiteranschluss 110.229 (2 m Kabel) inkl. Zylinderschraube M4x6-12.9 Verteiler


Ansicht auf Düsenspitze

DS Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12

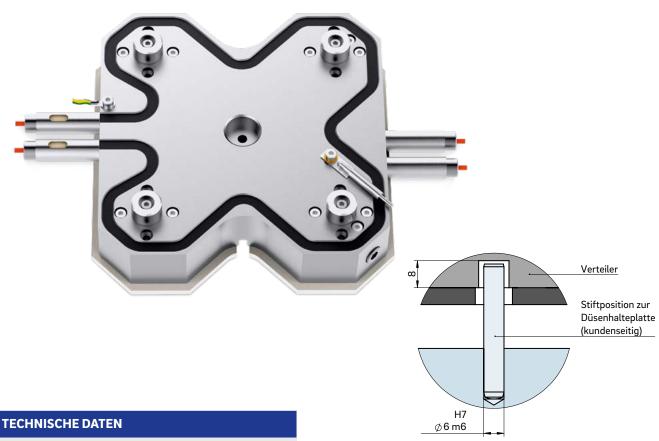
S Stichmaß zwischen den Düsen

- ① Verteilernahe Verschraubung
- ② Hochtemperatur-Isolierplatte
- Heizungsanschlüsse
- 4 Mögliche Stiftposition
- 5 Ausnehmung und Steckerlage abhängig vom Düsentyp

Auslegungsbeispiele/Balancierungen

Тур		KCP = 36 (VH) Kanal-Ød mm	KDP = 46 (VH) Kanal-Ød mm	Anzahlfach
K DAD	4	≤ 10	≥ 12 16	4
K_P4B	d	DS mind. 35	DS mind. 50	4

B = Balanciert

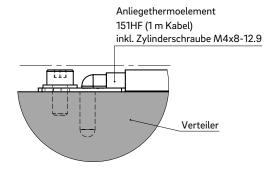

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264

Kreuzverteiler Typ KCP4B/KDP4B

Verteilerlänge (VL) 180

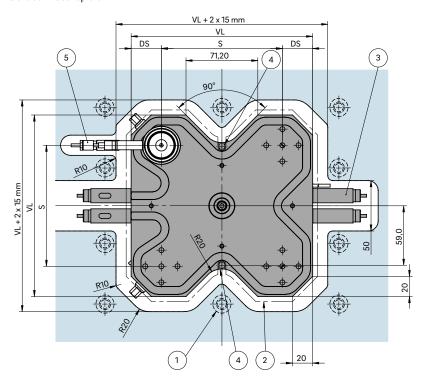
KCP4B/KDP4B180


Verteilerhöhe (VH) KCP: 36 mm **KDP:** 46 mm

Betriebsspannung 230 V_{AC}*

Verteilerlänge (VL)	180
Stiftposition (SP)	59,0
Regelkreise	1
Leistung (Watt)	2 ×
pro Regelkreis	1000

^{*} Volt Alternating Current (Wechselstrom)



PE-Schutzleiteranschluss 110.229 (2 m Kabel) inkl. Zylinderschraube M4x6-12.9 Verteiler

Ansicht auf Düsenspitze

Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12

Stichmaß zwischen den Düsen

- Heizungsanschlüsse
- 4 Mögliche Stiftposition
- (5) Ausnehmung und Steckerlage abhängig vom Düsentyp

Verteilerhöhe (VH)

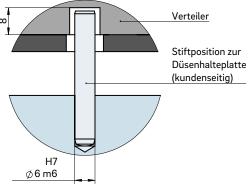
Auslegungsbeispiele/Balancierungen

Тур		KCP = 36 (VH) Kanal-Ød mm	KDP = 46 (VH) Kanal-Ød mm	Anzahlfach
K DAD	4	≤ 10	≥ 12 16	4
K_P4B	d D	DS mind. 35	DS mind. 50	4

B = Balanciert

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264

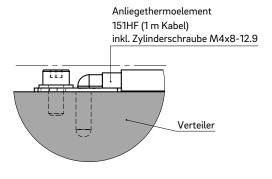

2.4.90 Technische Änderungen vorbehalten

Kreuzverteiler Typ KCP4B/KDP4B

Verteilerlänge (VL) 210

TECHNISCHE DATEN

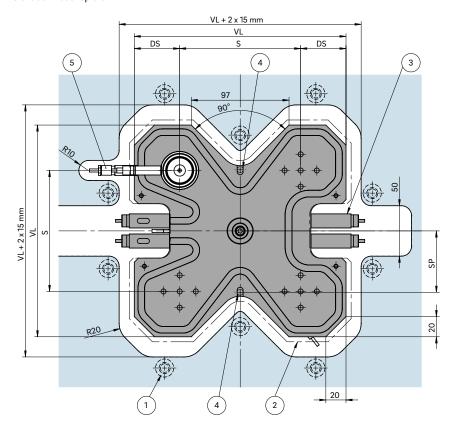
KCP4B/KDP4B 210


Verteilerhöhe (VH) KCP: 36 mm KDP: 46 mm

Betriebsspannung 230 V_{AC}*

Verteilerlänge (VL)	210
Stiftposition (SP)	60,8
Regelkreise	1
Leistung (Watt)	2 ×
pro Regelkreis	1000

^{*} Volt Alternating Current (Wechselstrom)



PE-Schutzleiteranschluss
110.229 (2 m Kabel)
inkl. Zylinderschraube M4x6-12.9

Verteiler

Ansicht auf Düsenspitze

Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12

S Stichmaß zwischen den Düsen

- ① Verteilernahe Verschraubung
- ② Hochtemperatur-Isolierplatte ③ Heizungsanschlüsse
- Mögliche Stiftposition
- (5) Ausnehmung und Steckerlage abhängig vom Düsentyp

Verteilerhöhe (VH) ("K")

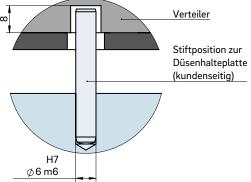
Auslegungsbeispiele/Balancierungen

Тур		KCP = 36 (VH) Kanal-Ød mm	KDP = 46 (VH) Kanal-Ød mm	Anzahlfach
K DAD	4	≤ 10	≥ 12 16	4
K_P4B	d C	DS mind. 35	DS mind. 50	4

B = Balanciert

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264


2.4.100 Technische Änderungen vorbehalten

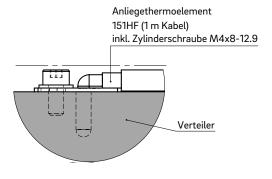
Kreuzverteiler Typ KCP4B/KDP4B

Verteilerlänge (VL) 240/270/300

TECHNISCHE DATEN

KCP4B/KDP4B 240/270/300

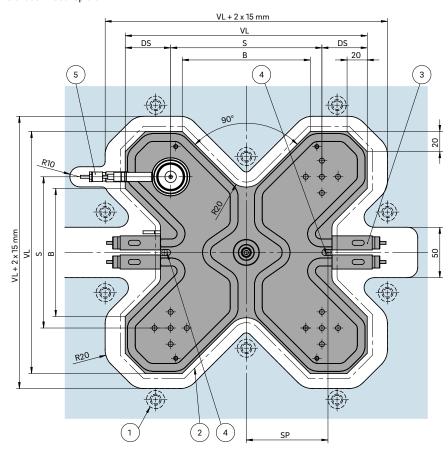
Verteilerhöhe (VH) KCP: 36 mm


KDP: 46 mm

Betriebsspannung 230 V_{AC}*

Verteilerlänge (VL)	240	270	300
Stiftposition (SP)	81,0	87,5	101,0
Maß B	127,0	156,6	187,0
Regelkreise	2	2	2
Leistung (Watt) pro Regelkreis	2 × 1000	2 × 1350	2 × 1500

^{*} Volt Alternating Current (Wechselstrom)



PE-Schutzleiteranschluss
110.229 (2 m Kabel)
inkl. Zylinderschraube M4x6-12.9

Verteiler

Ansicht auf Düsenspitze

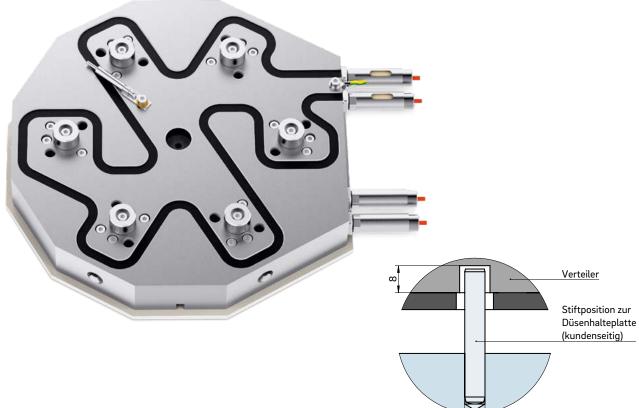
- DS Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12
- Stichmaß zwischen den Düsen
- ① Verteilernahe Verschraubung
- 2 Hochtemperatur-Isolierplatte
 3 Heizungsanschlüsse
- 4 Mögliche Stiftposition
- 5 Ausnehmung und Steckerlage abhängig vom Düsentyp

Verteilerhöhe (VH)

Auslegungsbeispiele/Balancierungen

B = Balanciert

Тур		KCP = 36 (VH) Kanal-Ød mm		Anzahlfach
K DAD	4	≤ 10	≥ 12 16	4
K_P4B	u	DS mind. 35	DS mind. 50	4


Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264

2.4.110 Technische Änderungen vorbehalten

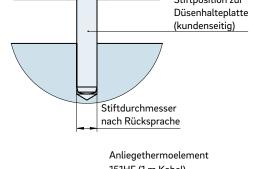
Sternverteiler Typ SCP/SDP/SEP

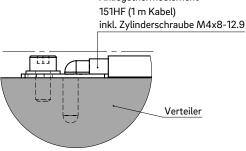
TECHNISCHE DATEN

SCP/SDP/SEP

Verteilerhöhe (VH) SCP: 36 mm

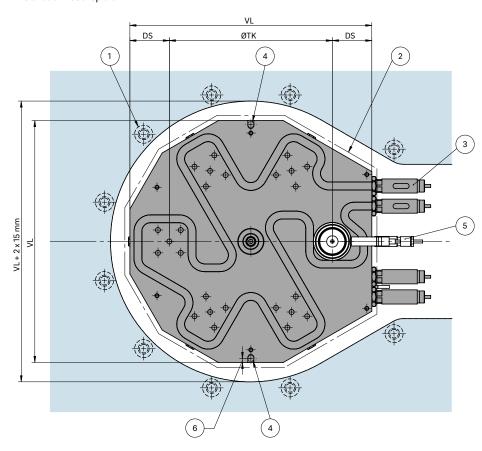
SDP: 46 mm **SEP:** 56 mm


Betriebsspannung 230 V_{AC}*


Verteilerlänge (VL) ØTK + 2 × DS

Die Heizleistung pro Regelkreis wird individuell berechnet.

* Volt Alternating Current (Wechselstrom)



PE-Schutzleiteranschluss 110.229 (2 m Kabel) inkl. Zylinderschraube M4x6-12.9 Verteiler

Ansicht auf Düsenspitze

Randabstand: DS a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12

ØTK Teilkreis des Stichmaßes

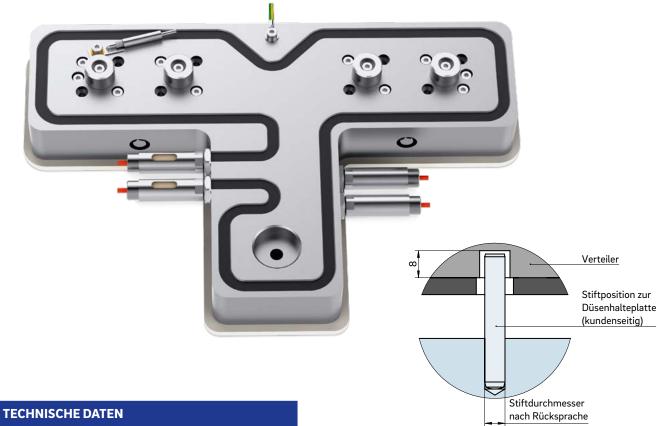
- 1 Verteilernahe Verschraubung
- 2 Hochtemperatur-Isolierplatte
 3 Heizungsanschlüsse
- 4 Mögliche Stiftposition
- 5 Ausnehmung und Steckerlage abhängig vom Düsentyp

Verteilerhöhe (VH) (F)

Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Auslegungsbeispiele/Balancierungen


Тур		SCP = 36 (VH) Kanal-Ød mm	SDP = 46 (VH) Kanal-Ød mm	SEP = 56 (VH) Kanal-Ød mm	Anzahlfach
S_P3B	d	≤ 10	≥ 12 16	≥ 16	3
S_P6B	d		≤ 8	≤ 10	6
S_P8B	d		≤ 8	≤ 10	8

B = Balanciert

2.4.120 Technische Änderungen vorbehalten

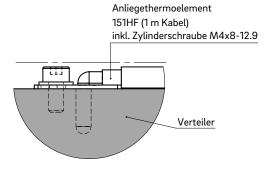
T-Verteiler Typ TCP/TDP/TEP

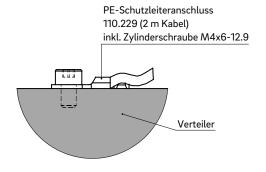
TCP/TDP/TEP

Verteilerhöhe (VH) TCP: 36 mm

TDP: 46 mm **TEP:** 56 mm

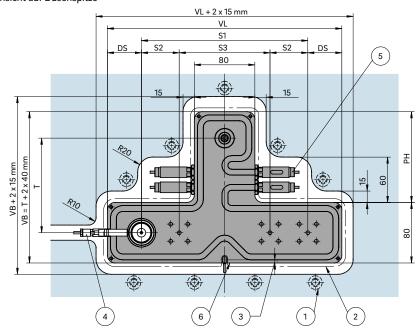
Betriebsspannung 230 V_{AC}*

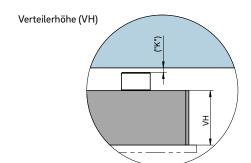

Verteilerlänge (VL) $S1 + 2 \times DS$


Verteilerbreite (VB) $T + 2 \times 40 \text{ mm}$

Die Heizleistung pro Regelkreis wird individuell berechnet.

* Volt Alternating Current (Wechselstrom)





Ansicht auf Düsenspitze

DS Randabstand: a. mind. 35,0 bei Düsengröße ≤ 6 b. mind. 45,0 bei Düsengröße 8, 10 c. mind. 50,0 bei Düsengröße ≥ 12

- T Abstand der Anschlussdüse zur Düsenreihe
- 1 Verteilernahe Verschraubung
- (2) Hochtemperatur-Isolierplatte
- Heizungsanschlüsse
- 4 Mögliche Stiftposition "SP" = d/2 + 1 mm
- (5) Ausnehmung und Steckerlage abhängig vom Düsentyp

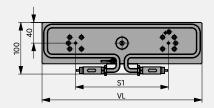
Das für die Wärmeausdehnung erforderliche Maß "K" ist durch Überschleifen der Druckstücke (12+0,1 mm) sicherzustellen! Ermitteln Sie die Differenz zwischen der Höhe des Verteilersystems und der Höhe der Rahmenplatte im montierten Zustand! ΔT gibt die Temperaturdifferenz zwischen der Verarbeitungs- und der Formtemperatur an!

VH	ΔT (°C)	100	150	200	250	300	350
36 mm	K (mm)	0,021	0,059	0,098	0,137	0,177	0,217
46 mm	K (mm)	0,033	0,078	0,124	0,170	0,218	0,264
56 mm	K (mm)	0,046	0,097	0,150	0,203	0,258	0,311

Auslegungsbeispiele/Balancierungen

Тур		TCP = 36 (VH) Kanal-Ød mm	TDP = 46 (VH) Kanal-Ød mm	, ,	Anzahl fach
T_P2B	d O	≤ 10	≥ 12 16	> 16	2
T_P4-	d	≤ 10	≥ 12 16	> 16	4
T_P4B	d	≤ 10	≥ 12 16	> 16	4
T_P6T	d	≤ 10	≥ 12 16	> 16	6
T_P8T	d	≤ 10	≥ 12 16	> 16	8

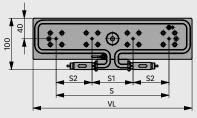
B = Balanciert T = Teilbalanciert - = Nicht balanciert



Rasant-Systeme

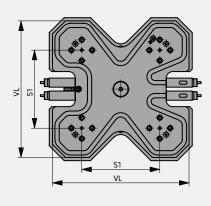
Komplett konfiguriertes Heißkanalsystem, bestehend aus Verteiler, Düsen und Zubehör. Lieferzeit zwei Werkwochen.

BAUREIHE GCP2



Länge (VL)	S1 mm
160	≥ 62 90 (SMT)
160	≥ 67 90 (SHF)
210	> 90 140
260	> 140 190
310	> 190 240

BAUREIHE GCP4B



Länge (VL)	S = Summe (mind max.) mm	
260	≥ 130 190 (SMT)	
260	≥ 145 190 (SHF)	
310	> 190 240	

BAUREIHE KCP4

Länge (VL)	S1 mm
135	≥ 44 65 (SMT)
135	≥ 47 65 (SHF)
165	> 65 95
180	> 95 110
210	> 110 140
240	> 140 170

2.4.140

DÜSENTYP SHF¹

Schmelzekanal- Durchmesser	Düsenlänge (L mm)
4,8 mm	50, 60, 80, 100
6 mm	50, 80

kleinstes Stichmaß S1 ≥ 67

DÜSENTYP SMT

Schmelzekanal- Durchmesser	Düsenlänge (L mm)
4,8 mm	50, 60, 80, 100
6 mm	50, 80

kleinstes Stichmaß S1 Schmelzekanal-Ø $5 = S1 \ge 62$ Schmelzekanal-Ø $6 = S1 \ge 63$

Schmelzekanal- Durchmesser	Düsenlänge (L mm)
4,8 mm	50, 60, 80, 100
6 mm	50, 80

kleinstes Stichmaß S1 ≥ 67 kleinstes Stichmaß S2 ≥ 39

Schmelzekanal- Durchmesser	Düsenlänge (L mm)
4,8 mm	50, 60, 80, 100
6 mm	50, 80

kleinstes Stichmaß S1 Schmelzekanal-Ø $5 = S1 \ge 62$ Schmelzekanal-Ø $6 = S1 \ge 63$

kleinstes Stichmaß S2 Schmelzekanal-Ø $5 = S2 \ge 34$ Schmelzekanal-Ø $6 = S2 \ge 35$

Schmelzekanal- Durchmesser	Düsenlänge (L mm)
4,8 mm	50, 60, 80, 100
6 mm	50, 80

kleinstes Stichmaß S1 ≥ 47

Schmelzekanal- Durchmesser	Düsenlänge (L mm)
4,8 mm	50, 60, 80, 100
6 mm	50, 80

kleinstes Stichmaß S1 Schmelzekanal-Ø $5 = S1 \ge 44$ Schmelzekanal-Ø $6 = S1 \ge 45$

RASANT-SYSTEM

Bestehend aus:

- Anschlussstück Typ AK inkl. Titanring
- 2/4 Druckstück
- 1 Verteiler, Isolierplatte optional
- 1 Anliegethermoelement 151 HF
- 2/4 Düsentyp SHF, SMT
- 2/4 Stromstecker CHF (SHF), fester Stromanschluss (SMT)
- 2/4 Thermostecker CMLK (SHF), fester Thermofühleranschluss (SMT)
- 1 Distanzstück

Zylinderstift zur Verdrehsicherung ist nicht im Lieferumfang enthalten.

BESTELLUNG

Beispiel: Sie wählen ...

- 1. Verteiler Rasant Baureihe
- 2. Verteilerlänge
- 3. Schmelzekanal
- 4. Düsenlänge
- 5. Düsentyp

Sie ergänzen Ihre Angaben noch um Stichmaß, Radius oder Winkel (Radius/Winkel in Abhängigkeit vom Angussaggregat frei wählbar).

Nutzen Sie bitte die Anfrage-Faxvorlage auf der Folgeseite.

¹ BlueFlow[®] Heißkanaldüse Typ SHF ist nicht für den Vertrieb oder zur Nutzung in den USA und Kanada bestimmt!

Anfrage-Fax +49 6451 5008-59

Anwendungsinformation Rasant-System

KUNDENDATEN Endkunde: Kunden-Nr.: Ansprechpartner: Firma: Telefon: Termin: Straße: E-Mail: Sonstiges: PLZ/Ort: Datum: **ERFORDERLICHE INFORMATIONEN ZUR ANWENDUNG** Artikelbezeichnung Automotive ☐ Elektronik Verpackungen Branche ☐ Konsumgüter ☐ Medizintechnik Materialbezeichnung (Handelsname) Schussgewicht pro Heißkanaldüse (g) Angussart (direkt/indirekt) Wandstärke (mm) **ERFORDERLICHE INFORMATIONEN ZUM WERKZEUG** Baureihe GCP4B GCP2 ☐ KCP4 Verteilerlänge (VL mm) Schmelzekanal-Durchmesser (mm) ☐ 6 mm 4,8 mm Düsentyp SHF SMT Düsenlänge (L mm) Stichmaß (mm) S1 S2 (nur GCP4B) Radius (R) Winkel (W) Bestellmenge

2.4.150

Liefertermin